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New Origin of a Convective Motion: Elastically Induced Convection
in Granular Materials
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Convection and fluidization in a vibrated bed of powder are reproduced in a numerical simulation. In
the simulation, each particle of the powder, during a collision, has a viscoelastic interaction with the oth-
er colliding particle. Because of the discreteness of the particles, this elasticity causes convection. The
critical values of fluidization and convection agree with experiments.

PACS numbers: 46. 10.+z, 02.60.+y, 47.25.gv

Recently, many physicists [1,2] have studied the dy-
namics of granular materials, because these materials
behave differently from continuous media like rigid, elas-
tic, or viscous bodies. This difference is because granular
materials behave in two distinct ways: as a set of parti-
cles and as continuous media. For example, granular ma-
terials under gravity can have a slope with nonzero angle
(angle of repose) in the quasistationary state. Ava-
lanches are also characteristic features in the dynamics of
granular materials.

One of the stranger phenomena is convection in a fluid-
ized bed under vertical vibration [3-7]. A schematic
figure of a typical experimental setup is shown in Fig. 1.
When a vessel containing a large number of small parti-
cles is shaken strongly, heaping of the surface starts spon-

taneously. At the same time, convection of particles
starts. Experimentalists claim that these phenomena are
dynamical phase transitions.

Moreover, convection is localized near the surface (sur-
face fluidization). The depth of the convection region in-

creases as the strength of the vibration increases. The
purpose of this paper is to propose a numerical modeling
to reproduce the convective motion and surface fluidiza-

tion effect.
Our model is a very simple one [1,8]. However, no one

has pointed out that this model can reveal an instability
in the fluidized bed [9]. In this model, each particle is re-

garded as a sphere with definite diameter d. When parti-
cles collide with one another, they penetrate into each
other. During the collision, there is a viscoelastic interac-
tion between them. The equation the particles obey is

N

x; = —g 8(d —tx; —x, t) k x; —x, —d
' ' + rl(v; —v, ) —g,

where 8(x) is a step function, N is the total number of
spheres, x; is the position vector of the ith sphere, and k
and rl are the elastic constant and the viscosity coefficient,
respectively. g is the acceleration of gravity and v is ve-

locity. The step function restricts the interaction between
particles to periods when the distance between two parti-
cles is less than d.

In order to understand the physical meanings of the
two interaction parameters k and rl, we consider the case
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FIG. l. A schematic of a typical experiment.

t where two spheres collide head-on with each other. In
this case, they have an effective coefficient of restitution
e =exp( —rltr/Co). The time interval during a collision is
also a function of k and g. We call this interval the col-
lision time, t«&1

= tr/to [to = (2k —
rl ) 'I ]. Therefore,

fixing k and rl determines the effective coefficient of resti-
tution and the collision time.

In our simulation, we neglect the effect of rotation for
simplicity. We employ Euler's scheme to integrate the
equation. The time step ht is modified at each step such
that hx;, the displacement of the ith particle during h, t,
does not exceed some value a.

A hundred such particles are put into a vessel having a
horizontal width of 26 and being semi-infinite in the ver-
tical direction.

We introduce a larger friction (t1 =20) between
spheres and side walls than that between spheres. This is
because the direction of convection is opposite to that ob-
served in experiments when there is no friction between
side walls and particles [10]. Particles also have an elas-
tic interaction with both side and bottom walls. The
strength of the elasticity is the same as that between par-
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FIG, 2. A snapshot of simulations. I =1.44. Solid lines
show the vessel. The dashed line indicates the location of the
bottom of the vessel at coot =z/2. The vessel is going down.

ticles.
Such a vessel containing powder particles is shaken

vertically in the simulation; as a function of time, the po-
sition of the bottom of the vessel is bcosroot. Experimen-
talists report [4] that the control parameter which deter-
mines the critical point (the beginning of the heaping) is

the acceleration amplitude of vibration, I =—broo . (Al-
though I =btoo/g in this experiment, we set g =1.0.) We
set 0=1.1 and change coo in order to control I. Other
parameters are fixed; d=2.0, e =0.9, a=0.01, and t,-,~

=0.1. A snapshot of the simulation is shown in Fig. 2.
%hen I is increased to a large enough value, convec-

tive motion starts. In order to measure the strength of
the Aow of convection, we introduce the cell-to-cell Aow

J". First the whole space is divided into cells of dxd
squares. We introduce integer coordinates X and Y in or-
der to label the cells. This means the cell (X, Y) spans
the space Xd & x & (X+1)d and Yd &y & (Y+1)d,
where x is the horizontal coordinate and y is the vertical
one.

The convection we are interested in should be mea-
sured by the coordinates fixed to the vessel. Therefore,
we record the positions of particles at times t =

4 T+ nT
(n is an integer), when the vessel is at the same position.
Here T is the period of the vibration of the bottom,
2z/Np.

By counting the number of particles which go out of
and come into a cell, we get the cell-to-cell Aow averaged

t over time steps t,

(S(X,Y)) = gtn, (X,Y;i) —n, (X, Y;r —7) t(X, (r) —X, (r —r), Y, (r) —Y;(r —7.))

where L; and Y; are integers describing the cell contain-
ing the ith particle. If the ith particle is in the cell having
coordinates X and Y, n;(X, Y, ;t) equals 1, otherwise it is
0. In Fig. 3, the averaged cell-to-cell fiow (S) is dis-

played. Convection is clearly observed in these figures.
Next, in order to see whether or not a critical value I,

exists, we show S=[/~ i S(X,Y) ] '~ as a function of I

in Fig. 4. S is almost 0 when I &0.9. On the other
hand, 2 takes on nonzero values when I ) 1.2. Therefore
there should be a critical value I, between 0.9 and 1.2.

Here we define I, as a threshold value for the start of
convective motion. On the other hand, in the experiment
described in Ref. [4], I, is defined as the threshold value

1

for the onset of heaping. Although it is not clear if both
definitions are identical, it is confirmed that heaping is
maintained by convective motion [3-5]. Since the heap-
ing will not occur without convective motion, our I, is a
lower bound of that obtained in the experiment. This
consideration agrees with the fact that the experimental
value of I, [41, I,=(12.5 ~ 1)/9.8=1.2, is a little bit
larger than 1.0.

In addition, the convective motion concentrates near
the surface region in Fig. 3. This corresponds to the sur-
face fluidization reported in the experiment by Evesque,
Szmatula, and Denis [3]. In order to see the existence of
the critical value observed in this experiment, we estimate
the depth of the region where the convective motion ex-
ists. We define the vertical radius of the convection .8 as

R'=((Y—(Y)ig(v)), ) ')(g(y)i, ,

where

(b)
FIG. 3. Cell-to-cell flow lines. Solid lines indicate the vessel.

(a) I'=1.44. (b) I =2.71. FIG. 4. Total flow 2 as a function of I .
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Y is the Y coordinate of a box which intersects the sur-
face in the static state. As shown in Fig. 5(a), in the
fluidized phase with convection, the density of powder is

smaller than that in the solid phase [7]. Therefore the to-
tal volume of powder becomes larger. This makes the po-
sition of the surface higher. We estimate this change of
surface with R and use it as a depth of fluidization.

The dependence of % upon I is shown in Fig. 5(b).
The existence of I, is less clear than that for (/), because
% takes on nonzero values even when I is small. Howev-

er, a drastic increase of % is observed just above I =1.0.
Therefore there is a critical value of I for surface fluidi-

zation too. Although changing e and t„~changes the ab-
solute values of % and 2, I, still remains at I = I.

In the following we will discuss the origin of this con-
vective motion (see Fig. 6). For I )g, we can separate
each oscillation cycle into intervals corresponding to ei-

ther —g« I cosroot or —g) I cosruot Th. e difference
between the two conditions is whether particles can slide

past each other or not. When —g « I cosroot, the (down-

ward) acceleration of gravity is greater than the down-

ward acceleration of the bottom. Therefore particles are
pressed toward the bottom, are almost always in contact
with each other, and cannot slide past each other.

On the other hand, when —g) I cosruor, the down-

ward acceleration of the bottom is larger than the ac-
celeration of gravity. Therefore, the bottom does not

gS I c 0 s coot
—g~I c 0 s oot

affect the movement of particles; the particles are in free
fall and have enough space to slide past one another.

Now we consider what happens during these intervals.
During the intervals when —g ~ I cosmot, the particles
are tightly packed and behave like a continuous viscoelas-
tic body. Then both vertical stress and horizontal stress
are induced (Fig. 6, left).

In the intervals when —g~ I coscoot, gravity cannot
push the spheres against the bottom of the vessel. Then
the spheres start to recover their relaxed state. First,
vertical stress is quickly released because there is no re-
striction on vertical motion. However, because of the
finite width of the vessel, horizontal stress remains un-

released.
The remaining horizontal stress causes a horizontal

flow, because particles slide past each other as mentioned
above. This motion is not induced when —g « I cosruot,

because the particles have no space to move. This non-

reversibility is the main reason that elasticity induces
convection in granular materials.

Since the induced horizontal flow collides at the center
of the vessel, it must become vertical. However, particles
cannot flow downwards because of the existence of the
bottom. The flow turns upwards, pushes up the surface,
and makes a bump (Fig. 6, right). Although some vacan-

cy appears at the bottom, the surrounding particles flow

down and fill it. This whole process constitutes a convec-
tive motion.

Since the vibration destroys the bump on the surface,
we cannot see steady existence of heaping in our simula-
tion. But it may have some relationship with the heaping
observed in the experiment.

Rajchenbach has proposed another explanation of
heaping [61. He explained the convection by the instabil-

ity of the surface. This instability is caused by an effect
like the Seebeck effect. In his theory, Sec —gradv(r).
U(r) is the mean quadratic velocity of the particles and
will be inversely proportional to the pressure. If the sur-
face is higher, the depth of the layer of powder is larger;
then the pressure is large and U(r) will be small. There-
fore the direction of S is from the region with low surface
to that with high surface. This generates the heaping of
powder which maintains convection.

In contrast, our model does not need heaping to cause
convection. The effect proposed by Rajchenbach has not

yet been observed directly. The viscoelasticity we have
introduced is natural, because it corresponds to the

FIG. 5. (a) A schematic of the explanation of the meaning
of yI. (b) Vertical radius yI of convective motion as a function
of I. FIG. 6. Illustration of the instability induced by elasticity.
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inelasticity of the collisions, as mentioned above. In spite
of the simplicity of our assumption, our simulation repro-
duces some nontrivial phenomena like convection and
fluidization.

In order to confirm our results, we propose that experi-
mentalists check the dependence of (1) and % on e and

t„~,and compare the results with the numerical simula-
tion [I I].

It is also useful to determine the critical value I,. by a
direct measurement of convective motion. This is be-
cause, in our model, convection is not the result of heap-
ing, as assumed by Rajchenbach, but rather the origin of
heaping. Since I, should be the same for both convection
and heaping, and the critical point is easier to find by ob-
serving convection rather than heaping, in the experiment
we expect that convection will start apparently before
heaping starts. These observations would confirm that
our model is much more plausible than Rajchenbach's.

In summary, we have proposed a new origin of convec-
tion in powder. Our model has reproduced the convective
motion and surface fluidization which are observed in ex-
periments. The mechanism proposed here is new; convec-
tion is induced by the elastic interaction between parti-
cles.
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