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Problem of Light Diffusion in Strongly Scattering Media
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Recently, in connection with the problem of Anderson localization of light, a new physical mechanism

was considered for the decrease of the diffusion coefficient, in which it is supposed that the velocity of en-

ergy transport, which appears in the diffusion constant D =cEIt,/3, may be much smaller than the phase

velocity. Using an exact definition of the diffusion coefficient and generalized Ward identity, we, howev-

er, show that in the low-density approximation I F coincides with the phase velocity.

PACS numbers: 42.25.Fx, 78.20.Dj

There is a considerable interest now in the propagation
and multiple scattering of light in strongly disordered
media with parameters which approach the assumed
threshold of Anderson localization of light, where ) /I ~ 1

and the difl'usion coefficient D must tend to zero [I]. In a
recent Letter, van Albada, van Tiggelen, Lagendijk, and

Tip [2] presented the results of measurements of the
diA'usion coefficient and the transport mean free path lt,
which demonstrate that in a strongly scattering random

dielectric medium the velocity of electromagnetic energy
transport t. E, defined as

D =vol, „/3,

can be very much lower than the phase velocity e~p. To
explain this discrepancy the authors developed a theory
based on the low-density approximation of the Bethe-
Salpeter equation. They used an approach similar to that
employed by Vollhardt and Woifle [31 to derive the fol-

lowing expression:

vs =c /(I+a)cn&, a =n I(s) —n
2

Ret(p, p;p ),dtt(s) d . 2

dp s dp

where t(p, p';E) is the element of the T matrix for one
scatterer, I(s) and p(s) denote the scattering intensity energy-dependent potential [4]. We also treat this ex-
and the phase shift in the direction of the unit vector s, pression in the framework of the low-density approxima-
and ( ), corresponds to angular averaging. tion and arrive at the conclusion that the correct expres-

In this Letter we examine these formulas on the basis sion for tE coincides with the phase velocity.
of the exact Green-Kubo expression for the diffusion According to Ref. [4] the difl'usion constant can be
coefficient of wave propagation in nonabsorbing random written as
media and the Ward identity generalized to the case of
the scalar wave equation or Schrodinger equation with an

(2)

D = (N p/N )Dtr,

where Dtr is represented in the usual Kubo form, viz. ,

2 f~
2 a

Dtt = „,(p p')4» (0,0) —p ReGn (4)
3nENp "n "n' '

r)p2

Here we denote fn
—= (2tr) fd p, c is the phase velocity in a homogeneous medium, G n= Gn(E —i 0) = [k—o

—
p Mz(E —i0)] '—with ko=E/c the Fourier transform of the averaged Green's function, and 4»(q, to) satisfies

the Bethe-Salpeter equation given by

[ —iEto/c +i(p q)]@»(q,co) =AGn(q, to)8»+ „U» (q, to)Nn n(q, to), (s)6 p"

where 6» ——(2tr) 8(p —p'). 2iAM&(q, to) =M& (E ) —M&, (E+) with p~ =p+'q/2 and E ~ =E ~ (to/2+i0);
AG&(q, co) is constructed in the same way. The function U» (q, to) is defined by

U» (q, to) =AGn(q, co)K» (q, to) —AMn(q, to) 6» .

With No=tr 'f&ImG&(E), the density of states for the considered problem is N =No(1+a) where

Noa = —tr 'J An(0, 0)imGn.
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The function Ap(q, to) takes the form
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itoEA p(q, to)/c'=, Up p(q, to) . (s)

[Note that in the text of Ref. [4] a correction is needed: There should be a change in sign in the definition of the con-
stant a, Eq. (17).]

The key point of our derivation is the generalized Ward indentity [4], written as

g(E )Mt„(E+) g(E—+)M~ (E ) =,K»(q, co)[g(E+)G ~ (E+) g(E—)G~ (E )], (9)

where g(E) =E [and g(E) =const for the problem of electron-impurity interaction]. Since Eq. (9) for q =0, to 0
yields the usual Ward identity, the expansion at q =0 to first order in to gives

ReM~+, 2i K»(0, to)
4p to , N 0

ImGp —K» (0,0) ReG~ =—ReM&, K» (0,0)ReG~a, =2 (10)

2

1+a =
J 2

ImG&.
nNp P

(i2)

Now we consider the low-density approximation [2,5]
in which the imaginary part of the Green's function has a
sharp peak at p =E/cth,

ImG, = nial p' (E/c, h) ']—. (i3)

where E/c~h=kp —ReMqg2kp. To calculate the coeffi-
cient Dit, we solve, using Eq. (13), the equation for the
vector 4&z~') =f&p @»(0,to), to 0, following from (5),
and then substitute the solution into Eq. (4) to obtain

It is easily seen that such an expansion of the right-hand side

Az(0, 0) =kp ReM&+„,K» (0,0)ReG~

Hence, by using the Ward identity we find, from Eq. (7),
i

that

of Eq. (8) leads to the equality

that 1+a =(c/c~h) . Thus, we see that in the low-density

limit, v~ coincides with cph.
Now we would like to analyze briefly the hydrodynam-

ic approach [31 used in Ref. [2]. Let us introduce the en-

ergy density 4(q, to) and flux J(q, to) as the integrals over

p, p' of the function qi»(q, to) multiplied by 1 and p, re-

spectively. Then, integration of Eq. (5) leads to the con-

tinuity equation with a supplementary term that is the in-

tegral of the second term on the right-hand side of Eq.
(5). For q, io~0 we take into account that the low-

density approximation for 4»(q, co) is proportional to

ImG~, given by Eq. (13), and use Eqs. (7),(S) to find

—i (Eto/c )(I+ )@a(q, )c+oiq J(q, to) =trNp. (16)

(i4)

where l&, =l/(I —(cos8)) and 1/1=imMi, ,(E)/kp. Here
we omit the contribution of the second term on the right-
hand side of Eq. (4) which is negligible in the low-density
limit.

The comparison of Eqs. (1), (3), and (14) yields

(is)

Further, following Ref. [3] we treat the equation for the
flux, derived from Eq. (5), and obtain Fick's law

J(q, to) =— iqDtt(E/c')4—(q, to), with Dtt defined by Eq.
(14). Hence, the diffusion constant takes the form given

by Eq. (3) and we arrive again at the formula (15).
We have evaluated the low-density limit for the con-

stant a in a simple way, and relied on Eqs. (11),(12).
v (c/c )' However, the calculations can be performed using Eq. (7)
UE C Cp

and the expression for the function A~(0, 0) which follows
cph 1+a

from Eq. (11) and the left-hand side of Eq. (10). In the
On the other hand, from Eqs. (12) and (13) it follows low-density approximation [2,5] the mass operator and ir-

reducible vertex take the form
M r (E —i0) =nt (p, p;E —i 0), —

K» (0, to) =nt (p, p';E —to/2 —iO) t (p, p';E+ to/2+i 0),
(i7)

where n is the number density of scatterers. By representing the scattering amplitude in the form t(p, p';E iO)
= it iexp(+ ip), one can obtain, with the aid of Eq. (13),

where

Ret(kps, kps;E ~ iO)+ it(kps, kps';E+ iO)i p(kps, kps';E) +a',
2kp 8E +4. S

(is)

cna' =
&

Imt (p p E —iO) ReGiI
8 (i9)
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with G~
) =[(E—i0) /c —p ] '. Since E =cko it is im-

mediately seen that the first two terms on the right-hand
side of Eq. (18) coincide with Eq. (2). It is also clear
that the term a', which corresponds to the third term on
the left-hand side of Eq. (10), is lost in the definition of
e. Further, it is worth pointing out that all terms in Eq.
(18) are formally of the same order in density. And

finally, there exists a generalized unitary relation for the
T matrix, which can be derived, for instance, by substi-
tuting Eqs. (17) into (9) and changing Gz(E) to

Gz (E). From this relation it follows that in the case of
electron-impurity interaction [g(E) =const], the right-
hand side of Eq. (18) (but not the sum of the first and
second terms, as it is affirmed in Ref. [2]) is equal to
zero. On the other hand, using this relation for the con-
sidered case of wave scattering, we can represent Eq. (18)
in the form of the integral of Im(t(p, p;E)GiI ) over p.
This expression, when treated within the same approxi-
mation that leads to Eq. (13), results, as expected, in the

equality a = (c/c~h) —1, obtained above.
Thus, it is shown that the correct low-density limit for

[.E coincides with the phase velocity. We conclude that
the formula (2) is not a result of the successive low-

density (or pure Boltzmann, in the terminology of Ref.
[21) approximation. Therefore, the agreement of Eq. (2)
with the experimental measurements, presented in Ref.
[2], can be regarded as a successful heuristic result only.
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