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Unstable Periodic Orbits and Transport Properties of Nonequilibrium Steady States
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Nonequilibrium steady-state flows governed by time-reversible equations of motion are described in

terms of unstable periodic orbits. Important properties, such as transport coe%cients and the multifrac-
tal spectrum, are related to the diflerence in probability of observing periodic orbits and their time rev-
erses. We apply the theory of the periodic Lorentz gas driven by a constant external field and numeri-
cally calculate the conductivity.

PACS numbers: 05.60.+w, 05.45.+b, 05.70.Ln

Several recent studies have been devoted to the rela-
tionship between transport properties and dynamical in-

stability in deterministic systems [1-3]. In order to study
deterministic nonequilibrium flows various modifications
of Hamiltonian mechanics have been devised which
preserve time reversibility [4-7]. Numerical simulation
of nonequilibrium steady states with such equations of
motion show in every case that the solution settles onto a
strange attractor of lower (Liapunov) dimension than
that of the phase space [8-10]. That is, the sum of the
Liapunov exponents for nonequilibrium attractors is al-

ways negative, corresponding to the contraction of
phase-space volume elements. It has been shown that the
sum of Liapunov exponents for nonequilibrium steady
states is also related to macroscopic transport coefficients
[6-10]. The simplest known nonequilibrium steady-state
problem with reversible equations of motion is a variant
of the Lorentz gas in which a point particle moves, with
constant kinetic energy, through a regular lattice of
scatterers under the influence of an external field. For a
fixed value of an applied field, the instantaneous current
is proportional to the divergence of the vector field. Thus
the average current is proportional to the sum of the
Liapunov exponents. The basis of our approach relies on
recent results showing how sets of longer and longer
periodic orbits that are embedded in the attractor form a
natural hierarchy of increasingly better approximants to
the invariant set [11—15]. Since the equations of motion
are time reversible, each periodic orbit has a time-
reversed orbit realized in the system along which trans-
port is in the opposite direction. In this Letter we show
how macroscopic flow, transport coeScients, Einstein re-
lations, and multifractal properties of nonequilibrium
steady states can be described in terms of the diAerence
in probability of observing periodic orbits and their time
reverses.

We shall illustrate the main ideas with the isokinetic
hard-disk Lorentz gas, which has become a standard
model in the field [16,17]. In this model a point particle
moves through an infinite triangular lattice of hard disks
of diameter o. under the influence of a constant external
field F. in the x direction and a time-varying constraint
force F, . The constraining force maintains the system at
a constant kinetic energy and makes a steady state possi-

ble. This problem is three dimensional, with two coordi-
nates Ix,yI specifying the position of the particle and a
third coordinate 0 giving the angle between the velocity
vector and the x axis, p = (p cos0, p sin0) (see Fig. 1). In
between collisions the equations of motion are

x = (p/m )cos0, y = (p/m)sin0, 0 = —(E/p)sin0, (1)

which can be integrated analytically. The point particle
undergoes elastic collisions with the disks. Using the
kinetic-theory definition of temperature, we define p /m
=kttT= P'. T—he equations of motion possess time-
reversal symmetry; i.e., the velocity field changes into the
opposite field under the involution T: (x, &, 0) —.(x,
I, 0 —tt). Let p, denote the flow in phase space given by
the solution to the equations of motion: p, (x(s),y(s),
0(s)) =(x(s+t),y(s+t), 0(s+t)). Symmetry under
time reversal means [18]

It -s =7 otttso7

The triangular lattice can be tiled with hexagonal cells;
see Fig. 1. Motion of the particle can be restricted to the
reduced configuration space of a single cell by identifying
opposite sides of the hexagon. When the particle reaches
a boundary of the hexagon, we transfer it to the opposite
side through parallel translation of the side before con-
tinuing the trajectory. A natural Poincare section Z of
the billiard flow is the two-dimensional collision surface
x +y =tr /4. Coordinates on the collision surface can
be chosen to be two angles defining the collision Iy, 0],
where y and 0 describe the position and velocity immedi-

FIG. 1. The geometry of the scatterers in the Lorentz gas. A

collision is specified by the two angles y and 0.
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ately following a collision. The Poincare mapping F takes
an initial state (y;, 8;) to the state immediately following
the next collision (y;+1,8;~1), where i is an integer index
indicating the collision number.

With the external field E applied, an average current
(v) =(p/m) in the positive x direction (v, ) is observed.
The transport coefficient in our example is conductivity x,
which is defined at a steady state through the relation
(v„)=x.(E)E. From the average of the divergence of the
vector field we obtain a relation between (v„) and the sum

of the Liapunov exponents: (v„)= —
(A, ~+A.2)/PE (we

have omitted the trivial zero Liapunov exponent from the
sum). Restricting this expression to a periodic orbit i,
one obtains that the time average of U over the orbit is

proportional to the sum of the Liapunov exponents of the
orbit:

(v„);=ax;/r; = —(X„+Zzf)/PE, (2)

where M and N are integers, and R is the distance be-
tween disk centers. The number of disks an orbit climbs
in the x and y directions is characterized by the winding

where hx; =x(r;) —x(0) is the distance along the x axis
of the orbit in the (x,y) plane, and r; is the period of the
orbit.

It is well known [11-15] that a chaotic set A can be
hierarchically approached through sets of progressively
longer unstable periodic orbits (UPOs). All prime UPOs
(orbits that do not retrace themselves) of n collisions
form a set P„, whose size increases exponentially with n

As n is increased P„more closely approximates A in that
smaller and smaller regions of phase space will be visited

by orbits of P„. As a result of the periodicity of cells in

configuration space a periodic orbit of (1) must satisfy

Ax =M&3R/2, Ay =NR/2,

vector (M, N). To each orbit with nonzero winding vec-
tor (M, N) &(0,0) corresponds a reverse orbit under time
reversal with winding vector ( —M, N—). We divide P„
into three sets: the set of all UPOs that do not transport
mass in the x direction, M=0, denoted by P„o, and the
set of all forward (reverse) UPOs that transport mass in

the positive (negative) x direction, M & 0 (M (0),
denoted by P„+ (P„-). Because of the reversibility of
the equations of motion, P„—can be obtained from P, +
through the reversing involution 7; the Liapunov ex-
ponents of a reversed orbit are minus those of the forward
orbit. Note from (2) that for E&0, the Liapunov spectra
of orbits in P„+ and P„are not symmetric about the
origin.

Consider the ith periodic orbit in the set P„. The
Liapunov numbers Al;(E) and A2;(E) of the orbit are
defined as the magnitudes of the eigenvalues of the
linearized nth iterate of the collision map: Al; (E)
=expel|;(E)z;(E)] & I and A2;(E) =exp[f2;(E)r;(E)]( 1, where we have ordered the Liapunov exponents

Xi &0&A,2. The probability of observing a particular
periodic orbit in a steady state is inversely proportional to
the expanding Liapunov number Al of the orbit. The
nth-order approximant to the average value of a function
g(x,y, 8) thus can be written as [11]

(g)(,)= g &;(E)A);'(E) g r;(E)A;'(E), (4)

where g; (E) is the integral of g over orbit i,
fo' g(&,X)ds with X on i The fu.nction g ma be
separated into an even g(' and an odd function gt' un-

der time reversal, g
') =[g(x,y, 8)+g(x,y, 8 —z)]/2 and

g
' =[g(x,y, 8) —g(x,y, 8 —x)]/2. For an odd function

g ', nonzero contributions to the numerator come from
x-climbing UPOs P„+ and P„. In this case the
numerator can be simplified by grouping each orbit with
its reversed image and using (2) we obtain

(g '
)t„~ g 0 Al; '(E) [1 —exp[ —PEAx; (E)]] r;(E)A, (E). (5)

1 g, „Ax,'(0)A;, '(0)= lim-
/j --2 Z; &„.;(0)A, (0)

(6)

Hence for E & 0, each forward UPO that contributes is

weighted more heavily than its time reverse in the sum

(5). This microscopic bias of forward over reverse UPOs
results in a nonzero contribution to the average value of

(o)

Approximants to the current, (v„), are obtained from
(5) with 0; =9 =Ax;. In the limit E 0, forward and
reverse orbits contribute positive and negative infinities to
the conductivity r(0) =Iim~ 0(v„)/E. However, as seen
from (5) expanded to first order in E, these infinities can-
cel and a positive finite value for the limiting conductivity
is obtained. Writing the numerator in this expansion for
a.(0) as a sum over UPOs in P„, we obtain

One realizes that the right-hand side of (6) is just the
periodic orbit expansion of the relation for the diffusion
coefficient 8=lim, ([x(t) —x(0)] )/2t. Thus the fa-
miliar Einstein relation between the diffusion coefficient
and the conductivity, 2) =x(0)/P, is obtained directly
from the nonequilibrium invariant measure.

To illustrate our arguments, we consider the above
Lorentz gas problem with a density of 5 the close-packed
density, for which the free path of the particle is bounded,
and a field strength E =O.olp /ma. We stress that
UPOs can be used to characterize systems arbitrarily far
from equilibrium. A small value of E was chosen to
demonstrate the usefulness of the UPO approximation
method in a regime where direct calculation of a. through
time averaging is unfeasible due to the enormous number
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TABLE I. Convergence of the prime UPO expansion for the current as a function of the
UPO collision length n. M„denotes the number of prime UPOs with n collisions.

K(n)P/mo

24
56

114
236
604

1650

1.4525
0.2265
0.3468
0.1698
0.1969
0.1183

1.1388
0.0469
0.3747
0.0850
0.2487
0.1124

0.6042
0.1089
0.2580
0.1347
0.1955
0.1258

0.1885
0.0431
0.1452
0.0631
0.1272
0.0893

of collisions needed to obtain an accurate value. We find

all UPOs with n collisions with the following procedure.
First, approximate UPOs are located by scanning a large
time series of collisions for pairs of points separated by n

collisions that are within a small preassigned distance of
one another [191. Then starting at each approximate
UPO [n points on the collision surface, (y;, 8;),
i =1, . . . , n], we solve for a UPO using the Newton-
Raphson iteration scheme applied to the 2n-dimen-
sional system of equations F(tir;, 8;) —(llr;+~, 8;+~) =0,
i =1, . . . , n, subject to the periodic boundary condition

(y„+~, 8„+~ ) (y~, 8~ ). This algorithm avoids exponen-
tial growth of error with UPO length, which occurs in

solving the fixed point equation F"(y,8) —(yr, 8) =0, and
allows one to calculate arbitrarily long UPOs to any
given accuracy, We find that a time series of 10 col-
lisions is sufficient to determine all UPOs with seven and
fewer collisions. The number of prime UPOs with 1-7
collisions and the corresponding n-collision approximants
of the conductivity x«& are given in Table I. As shown in

Fig. 2, the convergence of the approximants is slow and

oscillatory. The convergence is greatly improved by
means of the Shanks transformation [20] which elimi-

nates the most pronounced transient of the form cq",

tq~ & I. All members of the transformed sequence are
within 2% of our best estimate 0.100, which is obtained

0.3

0.2

from symmetry-reduced cycles discussed below. This re-
sult also agrees with the estimate 0.101, which is obtained
from a linear extrapolation of the data in Ref. [10].

In addition to time reversibility, the equations of
motion possess another reflection symmetry R: (x,y, 8)

(x, —y, —8). The phase space can be reduced to half
of a hexagonal cell by identifying points related through
the symmetry R. UPOs that are invariant under R in

the full phase space are UPOs of half the length in the re-
duced phase space. For a given collision length, one ex-
pects symmetry-reduced UPOs to approximate the at-
tractor better than nonreduced UPOs. This is born out

by the faster convergence of s l„) calculated with

symmetry-reduced UPOs, which is plotted as triangles in

Fig. 2.
The multifractal structure [21,221 of nonequilibrium

flows [17] can also be understood in terms of the trans-

port and stability properties of UPOs. We restrict our at-
tention to the cross section of the attractor on the col-
lision surface. The natural measure on this surface can
be approximated by fixed points of higher and higher
iterates of the collision mapping F (i.e., UPOs of longer
and longer lengths). Consider the nth iterate F", and let

j be an index labeling the fixed points of F" (j determines
a UPO). The pointwise dimension [15,21] (at a point X)
is defined through

Dp(x) = lim log[p(Bx(r))]/logr,
p~P

where p(Bx(r)) is the physical measure in a ball of ra-
dius r about X. The pointwise dimension for a point X on

the unstable manifold of j is related to the Liapunov ex-

ponents of j [15): D~(X) =1 —
A. ~, /12J. Using (2), we ob-

tain the following relation between Dz(X), the current,
and stab1e Liapunov exponent of the UPO determined by

(7)

0.0
1

I

n
5 6 7

FIG. 2. The conductivity K as a function of the order n of the
approximant (the UPO collision length). The circles (triangles)
are the results of full (symmetry-reduced) UPOs.

Thus the direction of mass transport on a UPO governs
the sign of D„(X)—2: D~ & 2 for forward orbits, D~ ) 2

for reverse orbits, and D~ =2 for orbits in Pp. Further,
the pointwise dimension of UPOs and their time reverses

are simply related: If a UPO has an associated pointwise
dimension 1

—
A, ~/kq —=a, its time reverse has the associat-

ed pointwise dimension 1 —) 2/X~ =a/(a —1). The Haus-
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dorff dimension [21,22] f(a) of the set of points X such
that Dz(X) =a can be calculated from UPOs [15]. In
particular, f(a) is the transition value of D for which

r.(D) = lim lim
ha On J

a+ha ~ D&(X) ~ a

AD —
1

2J

changes from infinity to zero as D is increased in value,
where the sum is restricted to UPOs which satisfy
a+ha ~ D~(X) ~ a. Summing over the time reverses of
the UPOs j with D~ =a and using Atji(' ' =Azj, we ob-
tain the relation

a —
1

f(a)+ a —2

a —
1

(8)

Therefore, one only needs to calculate the spectrum for
a & 2, the other half can be obtained through (8). Note
from (7) that the spectrum f(a) can be split into three
sets a & 2, a 2, and a & 2 according to the type of UPO
used in the calculation P+, Pp, and P, respectively. Of
special importance are the Hausdorff dimension Dp, the
maximum of f [f(ap) =Dp], and the information dimen-
sion D~ [f(a~) a~ D~]. Taking into account the rever-
sibility of the equations of motion in applying the
methods of Ref. [15], one can show Dp=2. Using this
result along with (8) one obtains a relation between a~

and ap. ap =D ~/(D ~

—1). Also from (2) and the
Kaplan-Yorke conjecture [21], one can derive Dt =2
+PE x(E)/A, 2(E). Therefore as E is increased above
zero, ap and a~ move away from the value 2 a distance
proportional to E with ap & 2 and at & 2.

In conclusion, we have shown that transport and mul-

tifractal properties of nonequilibrium steady-state flows

can be understood in terms of the topology and stability
of UPOs. The macroscopic flow is created by the favor-
ing, due to stability, of forward over reverse UPOs. This
asymmetry in weights of forward and reverse orbits also
determines the multifractal structure of the attractor.
The theory presented is directly applicable to viscous and
heat conducting nonequilibrium flows [7,8]. Further
studies are needed to clarify convergence rates.
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