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Are There Oscillations in the Baryon-to-Meson Ratio?
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All available data indicate a surplus of baryon states over meson states for energies greater than about
1.5 GeV. Since hadron-scale string theory suggests that their numbers should become equal with in-
creasing energy, it has recently been proposed that there must exist exotic mesons with masses just above
1.7 GeV in order to fill the deficit. We demonstrate that a stringlike picture is actually consistent with
the present numbers of baryon and meson states, and in fact predicts regular oscillations in their ratio.

This suggests a different role for new hadronic states.

PACS numbers: 12.40.Lk, 11.17.+y

In a recent work, Freund and Rosner [1] have exam-
ined the separate densities of observed meson and baryon
states as functions of their masses. They find that the in-
tegrated number of baryon states is less than that of
meson states for masses less than about 1.7 GeV, but
then greatly surpasses the meson number at higher ener-
gies. Since hadron-scale string theories are successful in
modeling not only the hadronic Regge trajectories but
also the exponential (Hagedorn) growth [2] in the total
hadronic density, Freund and Rosner point out that such
theories may also serve as the basis for understanding the
relation between the separate meson and baryon densities.
This is possible in part due to a recent result of Kutasov
and Seiberg [3], which states that the numbers of bosonic
and fermionic states in a nonsupersymmetric tachyon-free
string theory must approach each other as increasingly
massive states are included. On the basis of this theoreti-
cal result, Freund and Rosner predict that there must ex-
ist a number of mesons yet to be discovered with masses
above 1.7 GeV (in order to match the rise in baryon
number); furthermore, since the presently observed
baryon/meson ratio is consistent with quark-model calcu-
lations which include only conventional mesons and
baryons [4] (i.e., states with g7 and gqq quark configu-
rations, respectively), they additionally speculate that
these new mesons are likely to be exotic (with quark con-
tent g?*'g”*! p=1). This then implies the existence of
exotic baryons (with configurations ¢”*33”, p=1), and
one is led to imagine a tower of exotic hadronic states
with higher and higher masses.

In this Letter we first present a more refined analysis of
the existing data and then examine more precisely the
role a hadron-scale string theory might play in predicting
the densities of baryon and meson states. In particular,
while the result of Kutasov and Seiberg can be expected
to hold in the asymprotic region (mass M — o), we find
that for energies in the GeV range a naive hadron-scale
string picture implies that the ratio between the numbers
of baryon and meson states should in fact oscillate
around unity, with mesons favored first, then baryons,
then mesons again. The amplitude of this oscillation falls
to zero as the mass increases (in accordance with the
Kutasov-Seiberg result), but we find that for masses
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below 2 GeV, the oscillation is still within its first cycle
and can thus accommodate both the apparent surplus of
lower-energy mesons as well as the surplus of higher-
energy baryons. While there is therefore no apparent
need for exotic mesons in the mass range Freund and
Rosner had in mind (1.7 <M <2 GeV), this oscillating
ratio suggests an entirely different scenario for exotic
hadrons: Each repeating cycle of the oscillation may cor-
respond to the threshold for the next-order exotic mesons
and baryons. Other scenarios (e.g., involving glueballs
and hybrid quark-gluon states) are possible as well.

Let us now be more specific, and first outline some of
the basic results of string theory (including that of Ku-
tasov and Seiberg) which will be relevant for our discus-
sion. Strings are one-dimensional extended objects whose
different vibrational and rotational configurations corre-
spond to different spacetime particles or states; in general
the mass of such a state is given by

m=(n/a)"? nez, (1)

where @' is a constant characterizing the energy scale of
the theory and where 7 is related to the number of vibra-
tional mode excitations necessary for producing the state.
Since the Lorentz spin J of such a state must satisfy
J =< n+ay where ag is a constant, we have the general re-
sult

J<am’+ag, (2)

which identifies the constant a' as the traditional Regge
slope. If the particular string theory contains both boson-
ic and fermionic states, we may denote their numbers at
each level n as B, and F,, respectively; note that these are
the numbers of states or field-theoretic degrees of free-
dom, and not the number of particles (e.g., spin or isospin
multiplets). Another well-known prediction of string
theory, then, is the asymptotic exponential growth of
these numbers as functions of n:

B,,F,~an “beVn 45 p— oo (3)

where the positive constants a, b, and ¢ are theory-specific
parameters. Equations (2) and (3) apply in general to all
string-type theories. More recently, however, Kutasov
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and Seiberg have obtained a result [3] which applies to
those string theories (or more generally, to those two-
dimensional conformal field theories) which are free of
physical tachyons and which have modular-invariant
one-loop (toroidal) partition functions. Specifically, if we
define B(N)=XN=oB, and F(N)=X)-¢F,, then Ku-
tasov and Seiberg claim that

Nll_rp [B(N)—F(N)]=0, 4)

which in turn implies the weaker constraint

Nlim [F(N)/B(N)]I=1. (5)

We shall require only this weaker form of the Kutasov-
Seiberg result; indeed, the stronger version in Eq. (4)
may not be entirely correct [5].

The extent to which such a string theory can be taken
as a theory of hadrons is far from clear, and therefore in
this Letter we shall confine ourselves to only those issues
which follow from direct comparisons with the above gen-
eric results. Specifically, we shall assume [1] that one
can model hadronic physics as a GeV-scale string theory
giving rise to Egs. (2), (3), and (5), with bosonic states
identified as meson degrees of freedom and fermionic
states as baryon degrees of freedom; furthermore, we
shall consider only those generic aspects of string theory
which affect the relative numbers of these states (i.e.,
their ratio) or their separate patterns of growth. Any
other features, such as the specific absolute sizes of B(/V)
and F(N) or the mapping between particular string
configurations and particular hadronic states, are likely to
be highly model dependent.

We have computed the numbers and densities of exper-
imentally observed meson and baryon states as functions
of their masses. We have included those states containing
only the three light quarks (u,d,s) both for reasons of
experimental statistics [1] and more fundamentally be-
cause hadrons composed of heavy quarks do not lie on
linear Regge trajectories as a string picture would dictate
[Eq. (2)]. We differ from Ref. [1], however, in recogniz-
ing that although states in string theory are typically of
zero width, most of the hadronic states or resonances are
quite broad. Therefore, we have taken the hadronic den-
sity of states to be a sum of normalized Breit-Wigner dis-
tributions:

dN 1
—_— = Wi
dm 2rm ;

|

(m—M)*+T?4 "’ ©

where M; and I'; are respectively the masses and widths
of the observed states [6], and where W; are their multi-
plicities [i.e., the number of states per resonance, or
(21+1)(2J +1) for a charge self-conjugate state of spin
J and isospin I, and twice that otherwisel. In Fig. 1 we
have plotted the total hadronic density of states as a func-
tion of m, and it is clear that this density experiences the
exponential (Hagedorn-like) growth suggested in Eq. (3)
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FIG. 1. Total density of observed hadronic states as function
of mass, along with best fit to Hagedorn form of Ref. [2].

with Hagedorn temperature [2] Ty =[c(a’) 2] 7! =250
MeV, at least for masses up to 2 GeV. Barring unexpect-
ed physics, the failure of the curve in Fig. 1 to maintain
this growth beyond 2 GeV is likely to be a reflection of
current experimental limitations. Thus, we shall hence-
forth limit our attention to the experimental data below 2
GeV.

In Fig. 2 we have plotted the separate numbers (or in-
tegrated densities) of baryon and meson states with
masses m < M as functions of M. In order to facilitate a
comparison with Eq. (5), we have also plotted their ratio
as the shaded region in Fig. 3: This shaded region indi-
cates the uncertainty in the ratio function due to the ha-
dronic widths, with the upper border of the region corre-
sponding to the Breit-Wigner densities in Eq. (6) and the
lower border corresponding to the zero-width case. Ei-
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FIG. 2. Total numbers of observed baryons (solid line) and
mesons (dashed line) with masses < M, as functions of M.
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FIG. 3. Shaded region: observed ratio of numbers of

baryons and mesons, as discussed in text. Solid line: ratio func-
tion from a typical string model.

ther way, several features are immediately apparent,
among them the pronounced surplus of mesons below 1.5
GeV and the pronounced surplus of baryons above this
energy; indeed, this ratio shows no sign of a plateau near
unity. This figure thus clearly indicates that it is hardly
compelling to interpret this mass region as the region of
onset of Kutasov-Seiberg asymptotic behavior. It is in
fact straightforward to estimate the string level n in Eq.
(1) to which a mass of 1.5 GeV corresponds: Taking the
measured value of the hadronic Regge slope a'=0.9
(GeV) 72, we obtain n = 2. Indeed, the entire region <2
GeV corresponds only to string levels n < 4. Thus, even
though these low-lying levels experience the asymptotic
growth in Eq. (3), they clearly need not manifest the
asymptotic behavior predicted in Eq. (5); indeed, the
latter asymptotic behavior occurs only at higher energies.
Therefore, in order to determine the characteristics of
the approach towards asymptotic behavior, we have cal-
culated the ratio functions R(N) =F(N)/B(N) predicted
by a variety of different string theories (or string “mod-
els””) of the sort to which Eq. (5) should apply. While
certain features of this function vary greatly and are
highly model dependent, others—such as the exponential
increase in the level degeneracies [Eq. (3)] or the ex-
istence of a Kutasov-Seiberg limit [Eq. (5)]—indeed ap-
pear to be generic. In particular, we find an important
third universal feature [5]: As N increases, we find that
the function R(N) oscillates around unity, with the am-
plitude of this oscillation decreasing with increasing N.
This *‘damped’ oscillation, periodic in n=a'M?, is of
course consistent with the Kutasov-Seiberg result in Eq.
(5). Such an oscillation between bosonic and fermionic
states is a consequence (and in fact the signature) of an
underlying string symmetry known as modular invari-
ance, and the wavelength A of this oscillation is deter-
mined only by the energy scale of the theory [5], A =4/a’.
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The amplitude, on the other hand, is somewhat model
dependent, and in fact vanishes in the case of supersym-
metry: Indeed, the only way to break supersymmetry
while preserving modular invariance is to do so in this
regular oscillatory manner [5]. In Fig. 3 we have super-
imposed the results of a calculation based on a typical
nonsupersymmetric string model, plotting R(N) vs M
=(N/a') l/2_

In the mass range M <2 GeV, the behavior of the
string ratio in Fig. 3 is certainly consistent with the ob-
served ratio: This oscillation typically begins with R <'|
(at N=0), first crosses R=1 at N =2 (corresponding to
M = 1.5 GeV), and then increases beyond 1 as M ap-
proaches 2 GeV. Thus we see that the sign of the oscilla-
tion, as well as the position of the first node, are con-
sistent with the data, and a surplus of mesons below 1.5
GeV as well as a surplus of baryons above 1.5 GeV are
easily accommodated. Thus, on the basis of a comparison
between these two figures in the M <2 GeV range, we
find that we need not claim a deficit of meson states with
masses just above 1.5 GeV.

It will be interesting, however, to see whether the entire
string-theoretic oscillation is ultimately realized at higher
energies. While such an oscillation between bosonic and
fermionic states has not been observed experimentally, we
have seen in Fig. 1 that many hadronic states with ener-
gies above 2 GeV must be missing if Hagedorn-like
growth is to be maintained in that region. That many
such states are missing is also expected from an SU(3)
picture as well as from conventional Regge-trajectory ar-
guments. Such an oscillation, therefore, remains entirely
possible.

It is important to bear in mind that we have focused on
only the generic features predicted by a generic string-
type theory, and one would need to further refine a par-
ticular string picture in order to expect a more quantita-
tive agreement between the observed and predicted ratio
functions. For example, the string theories we have ex-
amined here are intrinsically noninteracting: All of their
states (or particles) have zero width, and can populate
only the discrete energy levels indicated in Eq. (1). This
is the origin of the sharp changes in the string ratio func-
tion in Fig. 3, and a more fully developed string theory
incorporating particle interactions would undoubtedly
yield a smoother, more continuous ratio function. Furth-
ermore, dynamical considerations are also at the root of
the relatively small size of the experimentally observed
ratio function at masses M <1 GeV: The lowest-lying
mesons (i.e., the pions) have masses protected by a nearly
unbroken chiral symmetry, while the masses of the
lowest-lying baryons (i.e., the proton and neutron) are
entirely unprotected and consequently much greater.
This is in contrast to noninteracting string theories, which
generally contain both bosons and fermions at the (exact-
ly) massless level. A fully interacting string theory,
therefore, should be expected to yield a closer agreement
between the ratio functions, especially in the lower-mass
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region. On the other hand, the oscillations in the ratio
function are of a more universal nature, and although in-
teractions can be expected to make them smooth, they
should remain quite pronounced in the region M <4 GeV
where their amplitudes are large.

Given that string theories generically lead to such oscil-
lations, and given that we cannot soon expect to observe
all existing states in the several-GeV region, it is natural
to try to predict how these oscillations might arise within
the context of a more traditional quark-gluon picture.
While the string theories themselves unambiguously pre-
dict which string vibrational-rotational configurations are
ultimately responsible for producing these oscillations [5],
one must specify or choose a particular mapping between
these configurations and the various quark-gluon states in
order to interpret these oscillations in terms of selected
groups of baryons and mesons. The results are then high-
ly model dependent. Therefore, rather than advocate a
particular string-to-hadron mapping, we will simply pro-
pose two possible resulting scenarios which naturally ex-
tend the ideas of Ref. [1].

One natural scheme which might lead to such a regu-
lar, periodic meson-baryon oscillation involves exotic
hadrons—i.e., mesons with quark structure (gg)?*' and
baryons with quark structure g” *3g” for p = 1. The spe-
cial cases with p =0 of course correspond to the ordinary
mesons and baryons which respectively dominate the two
halves of the first cycle of the oscillation. It is thus natu-
ral to speculate that such a repeating pattern of oscilla-
tions is the result of regularly spaced thresholds for the
pth exotic hadrons, implying alternating mass regions in
which either the pth exotic mesons or baryons dominate:

(g7)?* ' mesons: (p+1/4A)A=M?>< (p+1/2)r,
(7)
gP*3g” baryons: (p+3/A<=M*<(p+1)r,

where A=4/a'~4.4 (GeV)2. Such an ordering of
thresholds is in fact consistent with alternative analyses
[1,7). Another scenario involves not only glueballs but
hadron-glue ‘“hybrids,” for such states—if color neu-
tral—are in principle also present in a quark-gluon
theory. While glueballs are necessarily bosonic, hybrid
states can contribute to both bosonic and fermionic de-
grees of freedom depending on their quark content. In
this scenario, then, each subsequent cycle of our oscilla-
tion corresponds to the crossing of the threshold for the
next-order hybrid hadrons (i.e., hadrons with one addi-

tional gluonic insertion), with the wavelength A =4/a’ of
our oscillation representing the mass shift resulting from
such gluonic insertions. Thus, this picture too can natu-
rally explain the regularity of the string-predicted oscilla-
tion. Note, however, that any such picture necessarily
implies the existence of exponentially increasing numbers
of fundamentally new hadronic states at each of the mass
regions listed in Eq. (7)—starting with, in particular,
several hundred between 2 and 2.3 GeV.

In summary, then, we find that a generic hadron-scale
string theory is consistent with the observed ratio of
baryon and meson states; in particular, agreement with
string theory does not require the existence of “‘missing
mesons” (ordinary or exotic) in the mass region just
above 1.5 GeV. On the other hand, we find that string
theory and modular invariance predict a fermion/boson
ratio which oscillates around unity as the mass increases,
with the amplitude of these oscillations steadily decreas-
ing. Such a picture therefore lends itself to a variety of
interpretations involving exotic and/or hybrid hadrons,
with each cycle of this oscillation corresponding to the
thresholds for the next-order mesons and baryons. It will
be interesting to see whether such pictures can be realized
in more traditional (e.g., statistical or potential) quark
models as well.
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