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We apply the optimization procedure based on the principle of minimal sensitivity to the third-order
calculation of R, +, —. The eflective couplant remains finite, freezing to a value a,/ir=0. 26 at low ener-

gies. Using Poggio-Quinn-Weinberg smearing we find good agreement between theory and experiment

right down to zero energy.

PACS numbers: 12.38.Bx, 12.38.Aw, 12.38.Qk, 13.65.+i
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are both positive for fewer than six flavors. However,
while b and c are invariants, c2 depends upon the renor-
malization scheme (RS). The c2 quoted above is for the
"modified minimal subtraction" (MS) scheme. In other
RS's, though, c2 may be large and negative —indeed, one
is free to define the RS such that this is true —so it is

clear that the fixed-point issue cannot be decided from P
alone.

Instead, one should examine the low-energy behavior of
some physical quantity, such as the QCD correction to
the e+e total cross section at a c.m. energy Q:

%(Q) =a(1+ria+rza + ) .

The issue must also be addressed in the context of a prop-
er resolution of the RS dependence problem —which, in

our view, means within the framework of "optimized per-
turbation theory" (OPT) [2]. This is founded upon the
observation that, while perturbative approximations to
physical quantities do depend upon RS, the exact result is

RS invariant, so the approximation is only believable

Does QCD perturbation theory have anything at all to
say about physics below 1 GeV? Since the eAective
couplant

a= 1 (1)
n b ln(p/A)

[with b = (33 —2Nf )/6] becomes infinite when p =A
= (a few hundred MeV), it is generally thought that per-
turbation theory must completely break down in this re-
gion. However, Eq. (1) is valid only to leading order: If
higher orders produce a nontrivial zero of the P function
at a =a*, then a would remain finite, "freezing" to the
fixed-point value a* as p 0.

Is this "fixed-point scenario" realized? Seemingly not,
since the calculated coefficients of the P function [1],

where it is stable to small changes in RS. This "principle
of minimal sensitivity" is supported by many examples
[2] and it has an excellent track record in QCD phenome-
nology [3].

An OPT analysis of the fixed-point issue was given in

Ref. [4]. It was found that a complete third-order calcu-
lation is a prerequisite for addressing this question (and
at that time no such calculation existed in the QCD
case). To third order the fixed point is determined by the
equation

4 +t.a*+3p2a* =0, (6)

where p2 is the RS-invariant combination

p, —=r z+ c2 —(r i+ —,
' c) '. (7)

Thus, for c & 0, the existence or nonexistence of a fixed
point (in third order) is governed by the sign of p2. If p2
is positive then there is no solution for a*, meaning that
third-order perturbation theory breaks down before one
reaches zero energy, just as in lower orders. However, if
p2 is negative then a positive root a* exists, meaning that
OPT yields a finite result down to zero energy. If the
a is sufticiently small, then —with appropriate caveats
about nonperturbative eAects —one can take the pertur-
bative result seriously.

In 1988 a calculation of the third-order coefticient r2
was reported [5]. Later, it was found that this result was

in error, and a corrected result was published in 1991 [6].
The old result gave a positive p2, indicating no hope
for perturbation theory at low energies. Much worse,
though, the p2 was so large (65 for four flavors) that even

at relatively high energies the third-order corrections
were disconcertingly large. Several authors noted this as
evidence against the usefulness of "optimization" [7].
However, with the new result for r q, the situation is

transformed: The new pq is negative, and of moderate
size ( —13.9 for four flavors) [8]. At high energies the
net third-order correction is quite small [9], and one finds

fixed-point behavior at low energies [10,11].
In this Letter we report on the results of our investiga-

tion of third-order OPT applied to J7 in e+e and its
comparison, using the Poggio-Quinn-Weinberg (PQW)
[12] smearing method, to experimental data in the region
0 (g (6 GeV. Fuller details will be given in a separate

1320 Oc 1992 The American Physical Society



VOLUME 69, NUMBER 9 PH YSICAL REVI EW LETTERS 31 AUGUST 1992

paper [13]. We use standard values for the current quark
masses (m„=5.6 MeV, md =9.9 MeV, m, =199 MeV,
m, =1.35 GeV) and a A parameter that corresponds to

AMs =230 MeV for four flavors [14].
The matching of A across flavor thresholds requires

comment. The main eAect comes from requiring con-
sistency in the definition of A so that a is continuous at a
threshold. The point is well explained by Marciano [15],
but unfortunately his analysis uses a truncated expansion
of a in powers of I/In(III/A). Avoiding this unnecessary
approximation (which would ruin any attempt to go to
low energies), we proceed as follows: The integrated P-
function equation can be written as [2]

I ( /A) = '& dx ' dx K(a) (8)
p(x) " p"'(x) b

where p (x) is the second-order truncation, —bx (I
+cx), of the p function. [Our A is related [2] to the con-
ventional A parameter by ln(A/A) = (c/b) In(2c/b). ]
Consider a theory with n+ I quark flavors, but where we

are below the threshold of one quark. We could either
use Eq. (8) with Nf =n, thus defining a A for n flavors, or
use (8) with n+ I flavors, breaking the first integration
into two parts:

dx "'&&' dx " dx
In(Itt/A+ ) = +

4 0 p+(x) & ~th p (x) & 0 p(2)(x)

(9)

with r(MS;p =Q) =bin(g/AMS), and c2(MS) as given
above. (Note that, for a fixed Nf, p2 is a fixed number,
while pI is a function of the c.m. energy g. ) The princi-
ple of minimal sensitivity picks out an "optimum" scheme
in which the RS-stability conditions r)R /t)r =0 and
t)% /t)cz =0 are satisfied. These equations together
with the definitions of pI and p2 and the integrated p-
function equation (8) allow one to solve for the optimized
couplant a and the optitnized coefficients c2,F~,F2. The
procedure requires the numerical solution of two coupled
equations. A good initial guess at the solution can be ob-
tained from the approximation [17] r2= —

3 c2, F~ =0
(or, better, r~ =

3 c2a). At energies below A this approx-
imation becomes poor, and the numerical solution of the
equations becomes quite delicate (see [10,13]). However,
in this region one can be guided by the fixed-point solu-
tion [4] F2 3 C2 Fl 2 C2a

For the effective couplant and for R itself we obtain
the results shown in Fig. 1. Below 300 MeV the eAective
a, /x is essentially constant at the value 0.263, which is
the fixed-point value obtained from (6) with two massless
flavors. Note that this number is independent of the A

value. This a, /z value is determined purely by optimized
perturbative QCD with no experimental input. It agrees
remarkably well with low-energy a, /z values determined
phenomenologically [18,19].

To obtain R, +, —,allowing for quark masses, we use the
formula [12]

where the + and —subscripts mean "above" and "below"
threshold (i.e., Nf =n+I and Nf =n), respectively. Re-
quiring this to agree with Eq. (8) with Nf =n, we obtain
the matching condition

R, +, —=3+q T(v;)[I+g(v;)W],

where

(13)

K —(ath) K+ (attI)
ln A+A— 10

b — b+
The energy at which Nf should be incremented is not

unambiguously defined. We elected to make the change-
over at the qq threshold, so that ath is the optimized
couplant obtained at g =2mq [16].

The optimization procedure in third order is described
in Ref. [21, and details of its implementation are given in

Refs. [10,13]. Briefly, the third-order approximant %(3)

[defined by truncating (2) and (5) after three termsl de-

pends on RS through two parameters, r = bl(n/ III)Aand

c2. The coefficients r~ and r2 depend on these RS param-
eters such that the combinations pI=r rI and pz [Eq. —
(7)] are invariant. The values of these invariants can be
computed from the results obtained in the MS(III =Q)
scheme [6]:
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FIG. l. The optimized couplant a (=a,/Ir) obtained from
third-order optimization of R, where R, +, —=3+q; (I+%) for
massless quarks, and R, +, — is the e+e total hadronic cross
section normalized by the cross section to p+p . The vertical
lines indicate the s and c quark thresholds.
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(1 4m 2/Q 2) 1/2

T(v) =v(3 —v')/2, (i4)

g(v) = 4x
3 2v

3+v x 3

4 2 4z

Except for the use of an eAective Nf in obtaining 8', we

are ignoring mass dependence in the coeScients r ],r2 be-
cause the calculations have been done only for massless

quar ks.
A direct comparison of the resulting R, +, — with exper-

iment is not possible because nonperturbative eAects
drastically change the threshold behavior. However,
PQW [12] argue that one can define a suitably smeared
quantity,

Re+ -(Js )
Rpgw(Q;6): ds'

s' —
Q +g (I s)

which is insensitive to nonperturbative efrects provided
that 5 is large enough to smooth out the threshold reso-
nances. PQW used 5=3 GeV . Applying this smearing
both to the perturbative prediction and to the experimen-
tal data [20], we obtain Fig. 2. There is some discrepan-
cy in the charm-threshold region, but below 2 GeV the
theoretical and experimental curves are almost indistin-
guishable. If we reduce the amount of smearing, taking
h, =1 GeV, we obtain Fig. 3. Here the smearing is not
enough to smooth out the structure in the charm-
threshold region, but is sufficient to smooth out the p, ro,

and p resonances, and the agreement below 1 GeV re-
mains very good.

There are uncertainties in the data and in the theoreti-
cal prediction, of course. On the experimental side there
are (10-20)% normalization uncertainties in the continu-

um multihadron data and about 15% uncertainties in the
J/y and y' resonance parameters [20]. This (and uncer-
tainty in the c quark mass) can account for much of the
discrepancy in the charm region. However, R, +, — below
1.2 GeV is dominated by p, cu, and p resonances, whose
parameters are known to S% or better [14,20]. We esti-
mate that the experimental Rpgw curve below 1 GeV is

trustworthy to roughly ~0.12 for h, =3 GeV, and to
about +'0.07 for 6 =1 GeV .

On the theory side there is, of course, an uncertainty
due to the truncation of the perturbation series. Above 1

GeV one can see that this error is small by comparing
second- and third-order optimized results. Below about 1

GeV it is undeniable that the prediction for the net QCD
correction term % becomes rather uncertain. For in-

stance, at Q=0 the optimized coefficients become r~
= —2.9, r2=14.6, with a =0.26, giving a series .R(0)
=0.26(1 —0.76+1.01) in which the higher-order terms
are comparable to the leading term. However, at least
the signs alternate, and the corrections are not huge. We
would say that the resulting R prediction may well be oA'

by a factor of 2, but is unlikely to be oA' by an order of
magnitude. Thus, although its precise value is uncertain,
8 near Q =0 is rather small (0.3 ~0.3, say), so that the
uncertainty in R, +, — itself is modest, and smearing fur-
ther dilutes the uncertainty. There are other uncertain-
ties, particularly from the quark masses. Altogether we
estimate that the theoretical Rpgw curve below 1 GeV is

trustworthy to roughly + 0.07 for either 6 value.
How significant is the good agreement between the

data and the OPT prediction? As we just argued, the
smeared result is rather insensitive to .8 because it is

small. However, the important point is that OPT pre
diets that 8 is small down to Q =0. One could well have
imagined that the QCD correction term became large at
low energies. As an illustration, consider a "straw-man"
theory in which 8' is the same as ours down to 2 GeV,
but then continues to rise as 1/[ 2 In(Q/Ao)1, with

R pqv
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FIG. 2. The PQW-smeared R ratio for 5=3 GeV, showing
the prediction of "optimized" QCD perturbation theory com-
pared to experiment. Also shown is the prediction of the naive
parton model Ii.e., R =0 in Eq. (13)l.
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FIG. 3. The PQW-smeared R ratio for A= I GeV .
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AD=0. 2 GeV, until it reaches some value H, at which
value it remains frozen down to Q=O. Such a theory
gives essentially the same RPQw prediction as ours if H is
small (=0.3), but for larger H it gives a result that is

too large at low Q. Based on our previous estimate of the
experimental uncertainty in Rpgw(h=1 GeV ) we can
say that the data imply a limit H ~ 2. Thus, the data can
rule out a large % term.

One could also ask: How predictive is the theory?
How different would the low-energy data have to be to
give a significant disagreement with the predicted Rpqw
near Q =0? The data below 1 GeV are dominated by the

p peak, which, after smearing with h, =1 GeV, contrib-
utes a roughly constant 0.7-0.8 to RPQ below 1 GeV.
Thus, a 10% change in the area under the p peak would

change RpQw by the + 0.07 estimated uncertainty in the
theoretical prediction. We conclude that perturbative
QCD can tell us, at least crudely, the size of the p reso-
nance.
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