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A notion of mutual fractional statistics is introduced, and a field-theoretic construction to implement
it is given. Realizations in layered Hall systems are suggested. A generalization of anyon superconduc-
tivity, arising from mutual statistics, is proposed.
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~ (1)a ~ &aPy p(2) ~ (2)a &aPy p(1) (1.2)

From these equations, a number of things are immediate-
ly clear. First, upon looking at the a =0 components one
sees that this construction does implement the idea men-
tioned above —i.e., particles of each species carry Aux

seen by the other. Second, it is evident that consistency
requires that the j ' are conserved currents. Third, one
sees the symmetry of the construction between the two
species. [Indeed an integration by parts changes the last,
Chem-Simons term of (1.1) into something of the same
form but with 1 2.] This symmetry is closely tied up
with the Galilean invariance of the theory. (The addi-
tional terms actually have a much ~ider invariance—they can be deAned even in the absence of a metric,
and are generally covariant. ) Finall~, it is clear from Eq.
(1.2) that the gauge fields a ',a really are fictitious.
For the Lagrangian is gauge invariant, and the gauge in-
variant content of an Abelian gauge field is encoded in its
field strength f (at least locally); but Eq. (1.2) shows that
the field strengths (and not merely, as in Maxwell elec-
trodynamics, their gradients in space and time) are com-

As is by now well known, one may transmute the statis-
tics of particles in 2+1 dimensions continuously by
afixing fictitious charge and localized flux to them [I].
%hat could be more natural than to break this procedure
up into two more elementary operations —attaching Acti-
tious charge to one kind of particle, and fictitious flux to
another? That is what is considered in this Letter.

(I) Chem Simons-construction Su.—ppose that we
have a (2+1)-dimensional system with two conserved
species (say, for example, two gases of free point parti-
cles). Let us consider adding to the Lagrangian for this
system the terms

qj (~ ) ~ + (i )+qj (2) ~ &
(2) —p & ~a JPy

where a "relativistic" (2+I)-dimensional notation has
been used. The remainder of the Lagrangian is supposed
not to contain the gauge fields a ' .

From the form of Eq. (1.1), particles of s ecies 1 are
charged with respect to the fictitious field a t', and parti-
cles of s cies 2 are charged with respect to the fictitious
field at . The equations of motion obtained by varyin~
the Lagrangian with respect to the vector potentials a '

read

N irn ) +N2n =%) n+ N2m 2 . (2.2)

pletely determined by the particle currents.
At a microscopic level, the eff'ect of a Aux tube on a

charged particle is to add a phase factor proportional to
the winding multiplying the amplitude for trajectories
where these objects wind around each other. This alters
the spectrum of allowed relative angular mome nta.
Whereas ordinarily the relative orbital angular momen-
tum between two particles is fixed to be an integer multi-
ple of I'i, in the presence of the interaction equation (1.2)
the spectrum of allo~ed angular momenta is shifted by
(q /It)h. This effect is similar to the effect of quantum
statistics for identical particles, with the only diA'erence

being that in the case of identical particles the quantiza-
tion is in steps of 2A. Thus it seems sensible to refer to
the mutual statistics of the diA'erent particles, and to
parametrize it by the angle 8/n'=q /It.

(2) Layered Hall media Tri.a—l wave functions of the
form

(w;, z;) = II(w; —wj) 'fl(z; —zj) 'II(w; —zI)"

xexp[ ——,
' eB(xiwti'+Ziz;i')1 (2.1)

have been suggested [2) to describe incompressible liquid
quantized Hall states in situations where two distinct
kinds of electrons are relevant. (Actually, only the case
ml =m2 seems to have been considered previously. ) The
distinction might be between electrons of diH'erent spin,
or between electrons having distinct wave functions in the
transverse direction, such as electrons in two separate lay-
ers. Here the ~; and z; are labels for the two-dimensional
position of the different sorts of electrons. If m 1 and m2
are both odd this is an acceptable wave function as far as
quantum statistics is concerned, since it is antisymmetric
between the identical fermions.

Let the number of ~ electrons be N [ and the number
of z electrons be Ã2, both large. Then the wave function
of Eq. (2.1) will describe a sensible droplet, with both
species extending out to the same radius, if the degree of
the polynomial in Eq. (2.1) is the same for each variable.
This condition can also be derived most elegantly in the
formalism where the state is defined on the surface of a
sphere, where it is the condition that each electron sees
the same charge for the magnetic monopole at the center.
Thus we must require

132



VOLUME 69, NUMBER 1 P H YS ICAL R EVI E% LETTERS 6 JULY 1992

If this requirement is satisfied, it is not difficult to calcu-
late that the total filling fraction (adding electrons in

both layers) is

v=(mi+mq —2n)/(rn)m2 n—) . (2.3)

Based on experience with the Laughlin theory of single-

species Hall states, and some numerical work, it does not
seem absurd to consider the universality class of wave

functions having correlations of the sort represented by
Eq. (2.1) as candidates to describe incompressible quan-
turn liquids at these filling fractions, especially for layered
systems. In fact, a recent experiment [3] may be plausi-

bly interpreted as the discovery of the (mi, m2, n)
(3,3, 1) state. It will be most interesting to explore the

possible existence of incompressible states with mi&m2
experimentally. They exist only for definite, locked
values of the filling fractions for both layers simultane-

ously. Thus, for example, (5,3,1) requires total filling

fraction v = —, , with vi =
7 and v2 = —, .

Actually the exact definition of precisely what the
universal correlations implicit in the states represented by
the trial wave function of Eq. (2.1) are is somewhat

elusive. Some characterizations which have proved
effective for traditional quantized Hall states are in terms

of topological quantum numbers of the states on higher

genus Riemann surfaces [4], quantum numbers of edge
states for bounded samples [5], and quantum numbers

(charge and statistics) of quasiparticles [6]. Here I shall

briefly discuss the first and third of these characteriza-
tions for the new states.

Probably the two most useful topological numbers as-
sociated with quantized Hall states on higher genus
Riemann surfaces, which can provide signatures for them
in numerical experiments, are the particle-number-flux
displacement on a sphere and the degeneracy on a torus.
The particle-number-flux relation on a sphere can be de-
rived simply by doing the calculation of the filling frac-
tion more carefully for finite N;. The result is

may be inferred from the statistics of the quasiparticles
as will appear below, following the arguments of [7] or
from the description of the ground state in terms of an

effective pure Chem-Simons theory [8]. The relevant
Chem-Simons theory is a U(1) xU(1) theory with the
action

eaPra (a)f (b)1
ab ~ a Py (2.6)

where n i i m i, n22 m2, n i2 n2i n, which is immedi-

ately suggested by the form of Eq. (2.1).
The charged quasiholes are of two types. One may

construct them, as proposed by Laughlin [9] for single-

layer quantum Hall states, by inserting fictitious flux

tubes in either of the two layers. Thus the first type is

constructed as

822/)r mi/5, (2.9)

where d, =mim2 n. I—n addition there is nontrivial mu-
tual statistics between the quasiholes in different layers,
with

(wp, w;, z;) II(w; wp)%' ' '
(w;, z;) .

(2.7)

This construction inserts a quasihole in the w layer at wo,

there is of course a corresponding construction for
quasiholes in the z layer and closely related constructions
for the quasiparticles.

It is a fairly straightforward matter to adapt the tech-
nique of Arovas, Schrieffer, and Wilczek [6] to calculate
the quantum numbers of these excitations. One finds that
the quasiholes in the first layer are anyons with charge
(m2 n)/t). an—d statistical parameter

(2.S)

similarly, of course, in the second layer we have charge
(m i n)/t), a—nd

(mim2 —n )N —(m (+m z 2n)N(, — e)2/x- —n/a. (2.10)

for the total number and

2m)m 2
—(mi+m2)n (2.4)

NJ
1

, [(m) n)N~+ (m, ——n)m, ']
m&m2

(2.5)

for the partial numbers, where j' is the index unequal to
j. In general, the displacements from the naive filling
fractions are sizable, and demanding that the NJ be in-
tegers severely restricts the possible values of N&. Thus,
for example, the (5,3,1) state is potentially visible for
N&=8 with Ni =N2 2 or for N&=15 with Ni =3,
N2 =5.

On a sphere the ground state is nondegenerate but the
particle number is displaced from its limiting ratio to the
flux; on a torus the reverse is true. The degeneracy of the
states under discussion on a torus is mim2 —n . This

It is no accident that the entries of the statistical matrix
form the inverse of the matrix n that appears in Eq.
(2.6)—that effective Lagrangian encodes the number of
fictitious fiux tubes to be attached to electrons of the
different species, while the statistical matrix (roughly
speaking) encodes what fraction of an electron a unit flux

tube represents.
(3) Superconductivity mechanism The fund. a—mental

concepts underlying the anyon mechanism of supercon-
ductivity [10] seem extremely powerful and appealing,
and there have been many papers exploring their possible
relevance to the high-temperature superconductivity of
the copper oxides [11]. It has generally been supposed
that the mechanism inevitably involves violation of the
discrete symmetries P and T. Unfortunately despite
some early encouraging indications [12] recent experi-
ments [13] have cast considerable doubt upon the hy-
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pothesis of P and T breaking in the copper oxides, and
thus have cast a shado~ over the whole circle of ideas.

Roughly speaking, the basic mechanism of anyon su-
perconductivity can be described as follows. Anyons with
statistical parameter 8 z(l —I/n) can be represented
approximately as fermions —i.e., particles with statistical
parameter 8 x—moving in a fictitious average magnetic
field of magnitude

b gyg (2K/g )pgyg (3.1)

together with residual short-range interactions. Here q is
the fictitious charge of each anyon. Equation (3.1) is an
immediate consequence of representing the anyons as fer-
mions carrying fictitious charge and flux, upon replacing
the pointlike flux fixed to the particles by its uniform
average. This average field approximation becomes arbi-
trarily good at long wavelengths as n ~, and appears
to be good qualitatively even for small n No. w for n in-
teger the fermions will exactly fill n Landau levels, and
there will be a gap in the charged particle spectrum. On
the other hand, unlike what would happen for fermions in

an ordinary external magnetic field the fluid remains
compressible: Because b,„s is pinned to p,„s, slow varia-
tions of p will not require exciting particles across the
Landau-level gap, and can be made with a small cost in

energy. Thus there is a single low-energy mode, which is
necessarily dissipationless: This is the superflow mode. If
the anyons are electrically charged, this mode will pro-
duce not superfluidity but superconductivity, according to
the London-Landau-Ginzburg-Anderson-Higgs mecha-
nism.

As described, this mechanism for superfluidity clearly
relies heavily on the dynamical potency of the fictitious
magnetic field. Such a magnetic field violates the discrete
symmetries P and T.

It has been appreciated for a long time that one can
have anyons without violating the discrete symmetries, by
a doubling procedure [14]. That is, one may consider a
theory in which for every species with 8 statistics there is
also a species with —8 statistics. Then (if the couplings
are otherwise symmetrical) it will be possible to combine
the naive parity and time reflections with interchange of
species type, to construct a valid symmetry. In this way
one can readily construct models with two independent
anyon superfluids, each coupled to its own fictitious gauge
field, that respect the discrete symmetries. However,
these models feature an additional "leftover" superfluid
mode, which presumably precludes their use for describ-
ing presently known superconductors. The additional
mode consists of density modulations where the two
anyon fluids are 180 out of phase.

I would now like to consider a simple new possibility
opened up by disassembling anyons. Consider two species
of mutually distinguishable fermions, described by densi-
ties and currents p

' and j~' where r =1,2. Suppose
that their mutual statistics is zJn, implemented by the

k xk'
(3.2)

as opposed to a multiple of (ek —ek)/(k —k'( . Also,
there are additional three-body interactions.

Many variations on the specific model proposed here
could of course be considered; and it remains to be seen
which if any can be derived from more microscopic con-
siderations. The major points that emerge clearly from
the present discussion are that there is a valid —local, and
indeed rather simple —potential universality class realiz-
ing the idea of statistical repulsion between unlike parti-
cles in two dimensions, and that in this context the mech-
anism of anyon superconductivity is readily implemented
in essentially new models, including ones which respect
the discrete symmetries P and T.

I will conclude with the following comments.
(1) Understanding the phase structure of disassembled

anyon gases in general is a problem of considerable in-

trinsic interest. I have no substantial results to report on
this problem, but I would like to remark that it has an
important physical analog and that there is a plausible

Lagrangian of Eq. (1.1) with q /p 2z/n .To get a qual-
itative indication of the eA'ects of the interactions, let us

again follow the procedure of replacing the magnetic
fields pinned to the particles by their uniform average.
Then if the densities of the two fluids are equal, exactly n

Landau levels will be filled for each. For these values of
the parameters, the arguments for anyon superfluidity
will proceed essentially as before. The densities of the
two fluids may oscillate together without upsetting the
conditions for filled Landau levels; but out-of-phase oscil-
lations will upset these conditions, and will face an energy
gap.

The analogous arguments for anyon superfluidity can
be verified by controlled calculations in the limit of large
n, and although no thorough analysis has been done I ful-

ly expect that will be true in the present context too. For
n 2 the mutual angular momenta will be quantized to
be half-odd integer. This quantization condition does not
violate P or T symmetry, because the spectrum is un-
changed if we change the sign of the angular momenta.

With the identification of the two fermion fluids as
spin-up and spin-down electrons, the model considered
here may be considered as a possible realization of
Anderson's ideas regarding statistical repulsion between
opposite spin electrons [15]. However, the mechanism
presented here, in contrast to Anderson's ideas as I un-
derstand them, is intrinsically two dimensional and con-
tains commensurability effects —especially, the anyon su-
perconductivity mechanism —that are not clearly present
in his formulation. Also the precise form of interaction
following from the Lagrangian of Eq. (1.1), although it
has a similar characteristic divergence in the forward
direction, is different from the form he proposes. The
scattering amplitude for momenta k, k' is
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general principle suggesting the existence of ordered
phases. On a sphere subject to a normal magnetic field,
the single-electron wave functions in the lowest Landau
level are polynomials of a fixed degree —thus, each is as-
sociated with a definite number of zeros. These zeros
may be regarded as flux tubes for a fictitious gauge field
seen by the electron. (Note that in the lowest Landau
level the relative angular momentum has a definite sign,
so that in this context changing the spectrum by an in-

teger unit is meaningful, unlike for free particles. ) In the
quantized Hall states these eff'ective flux tubes are bound
to the other electrons, as is clearly indicated by Laugh-
lin's wave function. In the normal state, of course, they
dissociate. A gas of particles with mutual statistics can
have related transitions, wherein flux tubes and particles
bind or unbind. It seems reasonable to anticipate that in

general the formation of effective bosons, with subsequent
boson condensation, would be energetically favored at low

temperature. Thus, for example, two gases of 9/tr 3/8
anyons with mutual statistics 8/tr —3/8 might be ex-
pected to condense into hybrid pairs. The transition dis-
cussed above from two fermion gases with mutual half-
fermion (semion) statistics to a superfluid of correlated
pairs (pairs of the first species and pairs of the second
species, not hybrids), forming effective bosons, is a
different embodiment of the same principle.

(2) In three spatial dimensions one probably ought not
to expect a continuous range of possibilities for mutual
statistics, any more than for ordinary statistics, since an-

gular momentum, to which these are closely related, is in-

trinsically quantized. However, there is a sort of analog
for mutual statistics in three dimensions Ordi. narily the
relative angular momentum between two different species
of particles is integral. However, it is a famous fact [16]
that the orbital angular moment between minimal mag-
netic monopoles and electric charges is half-odd integral;
thus we may say such particles have nontrivial mutual
statistics. This line of thought suggests a question. For
identical particles the angular momentum is quantized in

steps of 2h —odd for fermions, even for bosons. At the
kinematic level one could certainly imagine displacing
these rules by —, h. Is it possible to implement this possi-
bility in a local field theory?
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