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We apply methods developed by Lovelace, Lipatov, and Kirschner to evaluate the leading Regge tra-
jectories a(t) with the quantum numbers of nonexotic quark-antiquark mesons at N, =~ in the limit

t —~ where renormalization-group-improved perturbation theory should be valid. We discuss the
compatibility of nonlinear trajectories with narrow-resonance approximations.
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It is unlikely that quantum chromodynamics, the con-
sensus theory of strong interactions, can be exactly solved
with realistic values for all parameters. However, asymp-
totic freedom allows the application of weak-coupling
techniques such as perturbation theory to obtain the pre-
dictions of QCD for processes controlled by short-
distance dynamics. Besides high-momentum-transfer col-
lision phenomena, one can hope to use such weak-

coupling techniques for computing the mass spectrum of
hadrons containing only very heavy quarks. But for had-
rons containing light quarks and also for glueballs,
strong-coupling dynamics is unavoidable. Even idealizing
the light quark masses to zero does not simplify the dy-
namics enough for an analytical treatment: The S matrix
is nontrivial in all channels including those with particle
production, and the bound-state spectrum includes all nu-

clei as well as the lowest mass hadron in each flavor sec-
tor.

That is why 't Hooft's idea of exploiting the N,
limit [1] is so attractive. In this limit the scattering am-

plitudes involving hadrons vanish and in lowest nonvan-

ishing order are meromorphic in the channel invariants,
just as the tree approximation to a quantum field theory.
Nor do the nuclei bind in this limit. Thus an exact solu-
tion in this limit really would be significantly simpler
than the exact solution at N, =3. Unfortunately, with

currently available methods the infinite-N, theory seems
almost as intractable as the finite-N, theory. Lacking a
complete solution of large-N, QCD, we think it is

worthwhile to develop as much insight into the nature of
the hoped-for solution as possible.

String theory started as an eff'ort to build exactly the
sort of approximation to strong-interaction dynamics that
is provided by large-N, QCD. Since that approach led to
the "wrong" answer, it is important to understand how
the expected properties of QCD are different from those
of string theory. In string theory the Regge trajectory
functions a, „„t(ts)=tt't+ao, where a'=I/2trTo with To
the rest tension in the string, play a central role in the
string scattering amplitudes: They appear directly as the
arguments of the Euler beta function which gives the
lowest-order Veneziano four-string function A4(s, t)
=g 8( —a(s), —a(t)). The meromorphy of A4 in s and
t follows directly from that of the beta function and the

exact linearity of the Regge trajectories. Since the
large-N, hadron amplitudes are also expected to be mero-

morphic in s and t, the trajectory functions themselves
should be good signatures of the similarities and dif-
ferences between string theory and QCD. Also they
might carry some hints about the solution of large-N,
QCD.

In this Letter we study the Regge trajectories of large-
N, QCD in the "meson" channels (i.e. , those interpolat-

ing the rotational states of quark-antiquark mesons), in

the limit of large negative t where perturbative QCD
should be applicable. We follow ideas and methods
developed in Refs. [2-4]. These are essentially re-

normaligation-group-improved calculations based on

summing leading logarithmic contributions of Feynman
graphs. Such methods can only give the trajectory func-

tions in the weak-coupling approximation. Since the cou-

pling X=—N, g, /4tr "runs" with the scale, l( —t) —12/
1 1 ln( —t/Aqcp) for t —~, this means that we can
obtain only the large-negative-t behavior of the Regge
trajectories using these methods. [Note that the large-
positive-t behavior of the trajectories is characterized by
the confining force and should be asymptotically linear,

agcp(t) —t/2trk, where kR is the confining term in the

qq interaction energy. ]

Our first task is to identify the leading logarithmic con-

tributions to a scattering process involving the exchange
of a qq pair. In any gauge theory the ladder diagrams,
which iterate gauge-boson exchange between two fermion

lines, contribute two powers of In(s/lt ) for each addi-

tional rung. Thus the leading logarithms are actually

doubly logarithmic and dominate the single logarithms of
renormalization: The leading logarithmic sums will

therefore not include running coupling eflects. Thus we

proceed in two steps. First we evaluate the amplitudes to
double-logarithmic accuracy and then incorporate renor-
malization eftects which make the coupling run in the
second step. As shown in 1967 [5] for QED, the first step

typically leads to a fixed square root branch point in the
angular momentum plane. For QED processes involving

the exchange of total zero charge, the leading double log-

arithms come only from the ladder sum, which produces
a branch point located at J=J2a/tr where a= 1/137 is

the fine structure constant. When nonzero charge is ex-
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changed, there are additional double-logarithmic contri-
butions coming from soft "bremsstrahlung" photons
which either form crossed rungs in the ladder or Sudakov
vertex corrections [5]. Similarly, in QCD the double log-
arithmic contributions of the basic ladder diagrams of
Fig. 1 are supplemented by soft gluon bremsstrahlung
graphs [6]. Fortunately for us, these additional diagrams
are nonleading in the 1/N, expansion when the ladder
structure is "hooked on" to color-singlet hadron vertices
(note that these hadron "form factors, " represented by
the left- and right-hand parts of Fig. 1, involve on-shell
mesons and cannot be calculated perturbatively); so, they
do not enter into our calculation of the Regge trajectories
of large-N, QCD. Thus the double-logarithmic sum is

identical to the QED zero-charge exchange case with

N, g, /—4z substituted for 2a/x.
Since renormalization eA'ects are neglected in the lead-

ing double-logarithmic approximation, the results depend
on a fixed coupling constant A, . Asymptotic freedom must
at least make the location of the singularities in the angu-
lar momentum plane vary with t according to the replace-
ment A, k( —t), but actually the cut is expected to be
replaced by a distribution of Regge poles accumulating at
0 as t —~. This phenomenon was first uncovered by
Lovelace [2] for the case of p theory in six space-time
dimensions where the accumulation point is at J= —l.
He analyzed the Bethe-Salpeter (B-S) equation with a
kernel improved to include the eA'ects of asymptotic free-
dom. This equation produced partial-wave amplitudes
with only pole singularities in the angular momentum
plane. Since he only considered the case t =0, his results
for the pole locations (Regge intercepts) were un-

trustworthy. (The low-momentum theory is a strong-
coupling one and the B-S equation is not valid there. )
This shortcoming was removed by Kirschner and Lipatov
[4], who incorporated t dependence in leading order and

obtained a(t) for large negative t instead of a(0). With
large enough t, the eff'ective coupling is weak, justifying
the B-S equation. Earlier, Lipatov [3] had obtained simi-
lar results for the asymptotic behavior of the Pomeron
(glueball) trajectory in QCD. In this note we find the
corresponding asymptotic behavior of the qq trajectories
in large-N, QCD.

In order to incorporate the running coupling, we con-
sider the B-S equation which sums the ladder subgraphs
in Fig. 1. We represent the Green's function for the
ladder subgraphs as a matrix 0,b in the Dirac indices of
the qq lines coming in at the left. We apply the Dirac
operators to these two lines in the coordinate representa-
tion to obtain (for simplicity we take all m~ =0)

y r)i+(xi, x2,V I V2) y ~2 b(xl Vl)~(x2 V2)

+X(x ') y"e y "d„.(x|2),
where we have followed Lovelace's treatment of p6, re-

placing the coupling constant by the running coupling
A, (x ) = —12/1 1 ln(x A(cD). In a general covariant
gauge we define the coordinate space propagator by
d~v(x)/4K with

p|LxJ = l elx'P
(2z) ' p' ie-

=(I+g) q„,/2x'+(I —g)x„x,/x'.
The B-S equation is not gauge invariant, but violations of
gauge invariance will be small for weak coupling. Thus if
we only keep leading-order answers, our results should be
gauge invariant. We keep g arbitrary so we can confirm
this. We expect this equation to be accurate when k«1,
i.e., for xi2AQcD«1. The singularities in the t channel
are controlled by the solutions of the homogeneous equa-
tion

y |Illy 82=X(xlz')y"+y"d„„(x|2).

t = SF il, iF ) l'lF j llew
F ) ill F )g'IS IL

0

It is convenient to work with c.m. and relative coordinates
r =(xi+x2)/2 and p=xl —x2 and to Fourier transform
with respect to r, whose conjugate variable is q so that

q
= —t. Then the homogeneous equation reads

y (|I/|Ip —iq/2)4'(p, q) y ( —|I/tIp —iq/2)

=x(p ') y"4'(p, q) y "d„„(p).

FIG. l. A typical large-N, diagram contributing to meson
scattering with the exchange of a qq ladder structure. The
leading log approximation as s ~ is the sum of graphs with
an arbitrary number of gluon rungs represented by the vertical
double lines. In the double-line representation of Feynrnan dia-
grams developed in Ref. [1], the gluon propagator (A„(x);
xA.(0)i) carries the color factor b BJ; each Kronecker delta is
represented by one of the double lines. Thus each closed line in

this diagram supplies a factor g, =', 6 =N, .

We should only use this equation for small p and large q
when the eAective coupling associated with both scales in

the problem is small.
For qp«1, but q,p '))AQQD the B-S equation be-

comes quite manageable. This limit reduces it to the
q =0 case, with its O(4) symmetry. As in Ref. [4] one
can conveniently consider the lth partial waves in this
limit by making the ansatz

+t(p)=, , f(lpl)+4. yg(lpl)
(

Is I' p'
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2l[2)+ I]f—[2)—ll g=k(p )g.

Here S—= Ipl&/t)lpl =&/()in(lplA) is»mply t"e ~~~ling

derivative in the magnitude of p.
Equation (1) is a spinor version of the small-p B-S

equation for the ((i6 theory analyzed in Refs. [2,4]. With
k(p ) approximated by —6/111n(~p~A), the Laplace
transforms of Af, )(,g satisfy a pair of first-order diff'eren-

tial equations in 2)= —2iv Unli. ke the single equation in

the (t6 case which can immediately be integrated, this
pair of equations is equivalent to a single-component
second-order equation which cannot be so readily solved.
However, the leading angular momentum singularity
(with largest Rel) is controlled (for small X) by I and v

small compared to unity. To see this note that the deter-
minant of the coefficient matrix on the left-hand side of
(1) is —[I +4v ][(I+2) +4v ] in v space. For small

I, v, the second of (I ) shows that 2lf = b. (p )
+[2)—I] ]g. Inserting this approximate form for f into
the first equation and making the same approximations
there gives ( —2) +I )g=A. (p )g, the Laplace trans-
form of which gives a first-order equation in v. Thus we

see that this leading Regge singularity is controlled by

equations independent of the gauge (, as we anticipated
for weak coupling. Looking back to the full gauge-
dependent small-p equations, we notice that in Landau

gauge ((=0) one can eliminate f in favor of g in a p-
independent way. Thus in this gauge, which we choose in

the following, the Laplace-transformed equations are first
order in v and can be directly integrated.

Setting (=0, solving the second equation for f, and

substituting in the first we obtain

[I +4v ][(I+2) +4v ]g=[4+4v —I —2l]k(p )g.

The equation for g is now quite similar to the (t6 case and

we can repeat the steps in Ref. [4] to derive the asymp-
totic behavior of the Regge trajectories. First, (2) is
solved for A g by noting that [v, —ln (p A ) ] = —i so that
R—= —ln(p A2) can be replaced by i8/Bv Integrat. ing
the resulting equation and transforming back to the coor-
dinate representation yields

f+ oo

g(
—2) i d ivR —12i&(v)/I I

J —oo

where

4+ 4v' —I —2le(v) =— dv'
[I'+4v'] [(I+2)'+4v']

(3)

with (" a fixed lightlike four-vector, so that one is form-

ing traceless symmetric tensors of rank l. Plugging this
ansatz into the B-S equation then yields the pair of equa-
tions

[(2)—I ) ' —4]f+ 2 [%—I][S—I —2]g

This solution of the small-p B-S equation is, in fact, a
solution of the full B-S equation for q =0. But of course
the B-S equation is only a good approximation for large q
and small p. In Ref. [4] the analogous solution for the p6
theory is used to gain information about the large-q be-
havior of the trajectories by noting that for pq((1 but p
not too small one can have k(p ) =l(q ) for a large
range of p (essentially because the scale dependence of X

is only logarithmic). Thus instead of requiring regularity
of the solution at R =0 as in Ref. [2], the solution is
matched to that of the B-S equation with a p-independent
coupling taken to be X(q ) «1. For consistency of the
weak-coupling approximation this matching must be im-
posed at large R (small p).

The large-R behavior of (3) is exponentially damped
for extremely large R but there is oscillatory behavior for
R not too large. This can be extracted by finding the sad-
dle points vo which are solutions of

16vo+8[l +21+2 —6/11R] vo

+ I (1+2) —12[4 —I —21]/11R =0. (4)

We see that there are two real values of vp provided
R & (( [[4—1(I+2)l/I (I+2) j, which is consistent
with large R provided ~l ~

&&1. In this regime, Xg is well

approximated by the saddle-point evaluation
- ]/2

cos —+ voR (Ii( vp)
n 12
4 11

6z
114"(vo)

(5)

where vo is the positive solution of (4). For sufficiently
large R, the R dependence of vo can be neglected and (5)
can be matched to the small-p solution of the B-S equa-
tion with constant coupling k(q ). Scale invariance of
the finite-q 8-S equation implies that the solution is a
function of p~q ~. In the small-p limit it therefore has the
behavior

=2e'"'cos[S/2+ v, In)p('[q('], (6)

where v( is vo with 12/11R replaced by )(, (q ).
Replacing vo by v( in (5) and comparing to (6) gives

the matching condition

k(q )@(v))—
vt =, , ~ rrr+ —+—&,

1 6' z
ln (q '/A') 2 4

where r =integer. We shall find that the consistent
small-coupling solution of these equations gives l
=O(k' ) and v~ =O(A, ). Thus v(/I =O(k ' ) and
v /I —1. Neglecting all terms that vanish at zero k gives
@(v()= v(/I —4v(/3l . With these approximations
A, = I (1+4v(/I ), so the leading term on the left-hand
side of Eq. (7) cancels and we are left with

8v] 1 6'
re+ —+—

31' ln (q '/A') 2 4
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Replacing 1 by k(q ), we thus find the following behavior for the Regge trajectories a, (r) —[A, ( —t) —4vl]'i as
—OO

2/3

a, (t) — X ( —t) —2A, ( —r) rn+ —+1 2 56 11 8 x
—OO 32 2 4

h

Notice that there are an infinite number of trajectories
accumulating at 0 in the limit t —~, with almost
identical behavior of those of the ps theory obtained in

Ref. [4].
The phase b is not determined from the small-p dy-

namics considered so far. It must be determined by the
dynamics at pq —1. However, except in exceptional
cases, b=z in the limit we are considering. This is be-
cause this limit involves v= 0 in (6). For v=0 the two
behaviors p

—"are replaced by 1 and ]np. Generically,
both behaviors will be present, and unless the coefficient
of lnp exactly vanishes, the behavior for v slightly
different from zero must be

—[(qp) ""—(qp) ""1+b (qp) ""+c(qp) +""
V

with a, b, c finite at v=0. If the ]np term is present at
v=0, then a&0 there and 8=x at v=0. This is analo-

gous to the generic vanishing of phase shifts at zero ener-

gy. In that analogy the case a =0 corresponds to a "zero
energy resonance. " For the ps case, b=n was shown by
explicit solution of the constant-coupling B-S equation
using conformal invariance [4]. In gauge theories, a con-
formal transformation changes the gauge condition, so
the B-S equation, being gauge noninvariant, is scale in-

variant but not conformally covariant. Lacking an expli-
cit solution, we can only state that it is likely, but not
proven, that 6 =n for large-N, QCD.

We close with some comments about the significance of
nonlinear Regge trajectories for large-N, QCD. There is

a common belief [7] that narrow-resonance approxima-
tions require exactly linear (or at worst polynomial)
Regge trajectories. However, this conclusion depends on

a maximal analyticity assumption that the trajectory
functions are free of singularities in the t plane cut on the
right at threshold branch points [8]. Since Ima(t), the
discontinuity across the threshold cut, is proportional to
the resonance widths, the trajectories would then be en-
tire functions in the limit of zero-width resonances. We
have seen that the qq trajectories of large-N, QCD ap-
proach constants as t —~, and confinement together
with infinite N, implies linear behavior as t +oo as
well as no threshold branch points. The inescapable con-

+ ~ ~ ~

elusion is that the maximal analyticity assumption fails
for the Regge trajectories of infinite-N, QCD and there
are additional singularities in the t plane. This is prob-
ably also true at N, =3 since there is no good physical
basis for the absence of additional singularities. In Ref.
[9] (for earlier models see also Refs. [10,11]) one of us

discussed some examples of narrow-resonance models
with nonlinear trajectories with algebraic branch points
in the complex t plane. Some of these models have tra-
jectories which are asymptotically linear for large positive
t and approach constants at large negative t Unf.or-
tunately, they approach these constants as an inverse
power of t rather than an inverse power of ln( —t), so
they are not candidates for large-N, QCD. Nonetheless,
they do show that nonlinear trajectories are compatible
with narrow resonances, and indicate a direction toward
solving large-N, QCD.
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