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Spreading of Damage: An Unexpected Disagreement between the Sequential and Parallel Updatings
in Monte Carlo Simulations
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Damage spreading in the Ising model on a triangular lattice, for ferro- and antiferromagnetic interac-
tions, is investigated using Glauber dynamics. Two procedures for updating spins are employed, the
sequential and parallel ones. (a) The sequential algorithm leads to a dynamic transition at a tempera-
ture very close to the usual static critical temperature T¢ in the ferromagnetic case, whereas in the anti-
ferromagnetic problem, no transition is found, suggesting that the equilibrium phase transition and the
frozen-chaotic one are strongly correlated. (b) The parallel recipe is not able to distinguish the two in-
teractions, giving a similar dynamic transition for both, at a temperature which is considerably different

from Tc.

PACS numbers: 05.50.+q, 75.10.Hk

The study of dynamic critical phenomena [1] has be-
come a very attractive field in statistical mechanics nowa-
days. Whereas considerable progress has been made in
the understanding of static phase transitions throughout
the last two decades, much less is known about the dy-
namic aspects of them. Most of the efforts have made
use of Monte Carlo simulations, for which the system,
starting from an initial configuration, travels in phase
space under the presence of thermal noise; its trajectory
follows from application of the specific Monte Carlo rules
(heat bath, Glauber, Metropolis, etc.).

A very important question is, for a given temperature,
how do small perturbations at time ¢ =0 affect the evolu-
tion of a given physical system, or in other words, how
does the configuration at a time ¢ (t— o) depend on its
initial conditions. One way to investigate this is by taking
two distinct configurations which are, at the beginning,
very close in phase space, and following their dynamics.
For the case of Boolean variables, in which we will be in-
terested here, this can be done by studying the time evo-
lution of their “Hamming distance” or “damage” [2],
defined by

N
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where N is the total number of lattice sites and the sum
refers to all dynamic variables in each configuration.
{o: (1)} and {r;(t)} represent two configurations of the
system which evolve under the same Monte Carlo rules as
well as the same sequence of random numbers. For a
given nonzero initial damage D(0), after a long period of
time, usually one of the following two distinct regimes
can be found, depending on the value of the temperature:
a “chaotic” one where the damage propagates, and the
two configurations remain apart in phase space, and a
“frozen” one where the damage heals and the config-
urations meet after some time, giving D(e0)=0. The
sharp frontier between these two regimes characterizes a
phase transition at a given “spreading temperature” 7.

Some controversy exists concerning the correlation be-
tween these transitions and the usual static phase transi-
tions in statistical mechanics models. For the ferromag-
netic Ising model on the square lattice, using the Glauber
[2,3], heat-bath, and Metropolis dynamics [3], one prac-
tically finds a temperature T =T, where T¢ is the usual
Curie temperature of the system. However, for the same
model in the cubic lattice, the Glauber dynamics leads to
a small discrepancy (about 4%) between T and T¢ [4,5];
it has not been investigated up to the moment whether
such a difference occurs also within other Monte Carlo
rules. More surprising is the persistence of the chaotic-
frozen transition in the presence of an external magnetic
field; this has been verified for the three-dimensional Is-
ing model within Glauber dynamics [5], and presumably,
it may also occur in other systems.

For the *J Ising spin glass on a cubic lattice, two
characteristic temperatures were found within a heat-
bath dynamics [6], which can well be associated, respec-
tively, with the onset of spin-glass ordering (temperature
T,) and a Griffiths phase (temperature T, T;> T)).
However, the same approach leads to a qualitatively simi-
lar picture in two dimensions, where it is currently be-
lieved that there exists no spin-glass phase. The Griffiths
phase for the 3D case was shown to present multifractal
behavior whereas the corresponding 2D case did not [7],
suggesting a possible procedure to single out spin-glass
behavior. Nevertheless, the Glauber dynamics was un-
able to detect the Griffiths phase for the cubic lattice [8].

Besides all the elements mentioned above which
characterize the dynamic evolution of a given magnetic
system, i.e., the interactions (ferromagnetic, antiferro-
magnetic, spin glass, etc.), the Monte Carlo rules (heat
bath, Glauber, Metropolis, etc.), the lattice geometry,
and the symmetry of the spin variables, another impor-
tant feature concerns the particular way in which the
spins are updated. Usually two prescriptions are em-
ployed for updating spins, namely, the sequential and
parallel ones. In the former case, spins are updated one
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at a time (like a typewriter or in random order), whereas
in the latter, all spins are updated at once. The advan-
tage of the parallel algorithm is that the updating opera-
tion can be easily vectorized, resulting in a gain of com-
puter speed. It has been shown, within heat-bath dynam-
ics for a non-Hamiltonian system with nonsymmetric in-
teractions, that such recipes lead in the long-time limit to
similar results [9,10], whereas for the case of symmetric
interactions they give different equilibrium distributions
(the sequential method converges to the usual Boltzmann
distribution, while the parallel one does not [11]). How-
ever, it has been argued in the literature that, although
being different, such equilibrium distributions should
present many properties in common; e.g., the critical tem-
perature and correlation length should be identical in
both cases [12,13]. The main result presented here ad-
dresses this point; we show evidence that strongly sug-
gests important physical differences between the sequen-
tial and parallel updatings, in particular, in the critical
temperature evaluation.

In this Letter we investigate the relation between the
chaotic-frozen transition and the usual static phase tran-
sition, using both typewriter sequential and parallel up-
dating algorithms. We do this within Glauber dynamics
for a simple physical system, i.e., the Ising model on the
triangular lattice. Such a system is very suitable for this
purpose, since it presents very distinct equilibrium prop-
erties depending on whether one deals with ferromagnetic
or antiferromagnetic interactions. In the former case, a
well-defined static phase transition occurs at a finite tem-
perature, whereas for the latter, one gets a fully frustrat-
ed lattice, providing only the paramagnetic state for any
nonzero temperature. Therefore, by a simple change in
the interaction sign, the damage spreading should change
radically, if the above-mentioned transitions are correlat-
ed in some way.

In order to study the damage D(¢) defined in (1), we
shall consider two Ising configurations {o;(z)} and
{z;(1)}, which will evolve in time under the same dynam-
ics and sequence of random numbers. For a time ¢, a
given variable at site i feels the presence of a local field,

hi(1) =2 K;[25;() —1]1 (s=0,7), ()
J

where K;; =pJ;; represent first-neighbor interactions and
0;(1),7;(t) =0,1 are Boolean variables. Let us define the
probability Pf(t) (s =0,1) associated with site i by

Pi(t) ={1+exp[—2hf ()1} 7' 3)

The Glauber dynamics, which we will use throughout
this Letter, consists in selecting a random number for site
i at a given time ¢, 0 < x;(t) <1, and determining the
new state of the variable s; at a time ¢+1 according to
the following rule:

1if x;(2) < Pi(@),

0 if x:(1)> Pi(p), (42)

s,-(t+l)"{ when s; (1) =0,

14

0 if x;(1)=<1—-PQ),
1if x (1) >1=P(),

In order to average D(t) over thermal and numerical
fluctuations, we repeated our simulations by generating
M samples of the system; from those, one obtains the
number of samples such that {o;(¢)} and {z;(:)} are still
different at time r. We define the average distance (D (¢))
only over those surviving samples.

We studied both ferromagnetic (J;;=J > 0) and anti-
ferromagnetic (J;; =J <0) cases and the updating of
spins was either sequential or parallel. We simulated sys-
tems with a number of samples M =40 outside the criti-
cal region, going up to M =250 near criticality; sizes
were taken up to L =40 (N =L?). The time averagings
were taken over periods ¢, = +L?, after waiting for an
equilibration transient 7= + L2 The initial condition
was always D(0) =1/N; this is the smallest possible dam-
age and with such a choice the results obtained are the
most insensitive to the particular initial site(s) to be dam-
aged.

Within the sequential updating we found strong evi-
dence of correlation between the dynamic chaotic-frozen
transition at a temperature 7 and the usual static phase
transition at a temperature T¢. For the ferromagnetic
case, Ts; and T are indeed very close (essentially indis-
tinguishable) as can be seen in Fig. 1, for L =40. For the
antiferromagnetic case, we found only the chaotic regime
for any finite temperature (see Fig. 1); this supports the
argument of correlation between the above-mentioned
transitions, since it is well known that the antiferromag-
netic Ising model on the triangular lattice exhibits no
static phase transition at a finite temperature.

However, for the parallel algorithm a very different

si(t+l)={ when s; (1) =1. (4b)
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FIG. 1. The averaged damage (D(t)) for the sequential up-
dating as a function of T¢/T, where Tc is defined as the Curie
temperature of the ferromagnetic Ising model on the triangular
lattice (T¢=3.64096J, in units of the Boltzmann constant).
For the ferromagnetic case (Q), the temperatures T and T¢ are
essentially the same, whereas for the antiferromagnetic one (%),
no frozen regime was found at any finite temperature. Both
cases shown above are for L =40.
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FIG. 2. The averaged damage (D (1)) for the ferromagnetic
Ising model on the triangular lattice, within the parallel updat-
ing algorithm, for the sizes L =20 (@) and 40 (0). T¢ is defined
as in Fig. 1. This shows a significant shift between tempera-
tures 7, and T, which is very insensitive to size changes.

picture was observed, in disagreement with earlier argu-
ments [12,13]. For ferromagnetic interactions, 7 and
Tc are not as close as in the sequential case, as shown in
Fig. 2 (about 9% difference) and this shift is very insensi-
tive to the size L; this was verified for L =20,40. It
would be desirable to simulate larger systems in order to
check if Ts— T¢, but from the sharpness of the transi-
tions shown in Fig. 2, we believe this difference will per-
sist as L — oo, For the antiferromagnetic case, a surpris-
ing result was found; a chaotic-frozen transition occurred
with basically the same characteristics as the ferromag-
netic one (see Fig. 3): essentially the same temperature
T, which is also very insensitive to changes in the size of
the system. Therefore, the parallel updating induced a
dynamic transition which has no relation whatsoever with
the static case; besides that, within this algorithm the sys-
tem was not able to distinguish between positive and neg-
ative nearest-neighbor interactions.

This striking disagreement between sequential and
parallel updating recipes for antiferromagnetic interac-
tions is directly related to frustrations in the lattice [14].
By looking at an elementary triangular plaquette at 7=0
(see Fig. 4), there are eight possible configurations asso-
ciated with it: Two of them present higher energy [all
spins up (o;=1) or all spins down (o;=0)], with all
three bonds unsatisfied; the other six, which are lower in
energy, always exhibit a single bond unsatisfied. One can
easily see that in this case, Pf(¢) =0 for configuration (a),
whereas P{(¢t)=1 for configuration (b) (s=o,7 and
i=1,2,3). For configurations (c)-(h), one can have, in
this limit, Pf(t) =0, +,1. Therefore, at low temperatures,
if one starts the simulation in any of the eight configu-
rations, Egs. (4) give the following: (i) The sequential al-
gorithm converges to the lower-energy states [(c)-(h)],
with all of them being visited with equal probability
(p=1/6). (ii) The parallel recipe leads after some time
to one of two higher-energy states [(a) or (b)]; after that,

T/T
FIG. 3. The averaged damage (D(¢)) for the ferromagnetic
(@ and antiferromagnetic (*) models, within the parallel up-
dating. In both cases, L =40. Tc is defined as in Fig. 1. The
points overlap within the error bars, showing that this algorithm
is unable to distinguish positive from negative interactions. The
temperature Ty is far from T¢ (about 9% difference).

the system jumps only between these two states (ie., a
circle of period 2, which corresponds to the lowest-energy
states for the ferromagnetic problem), characterizing an
erroneously induced breakdown of ergodicity. This may
explain why this prescription does not recognize the sign
of the interaction.

Finally, we conclude that the particular procedure used
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FIG. 4. The eight possible configurations associated with the
elementary triangular antiferromagnetic Ising plaquette. In the
sequential updating, the plaquette is allowed to visit all eight
configurations, and after some time, it will choose the ones with
lower energy [(c)-(h)]. In the parallel algorithm, once one of
the configurations (a) or (b) is reached, the plaquette will jump
only between these two states.
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for the updating of spins is physically relevant when one
intends to relate dynamic behavior in the long-time limit
with pure equilibrium properties: The sequential algo-
rithm seems to be more appropriate than the parallel one
for such a purpose. In this Letter, we have shown an ex-
ample where these two algorithms lead (in contrast with
earlier expectations) to very distinct results, namely, the
problem of damage spreading in the nearest-neighbor Is-
ing model on a triangular lattice. The former procedure
predicted a dynamic transition at a temperature very
close to the usual Curie temperature for the ferromagnet-
ic model, whereas in the antiferromagnetic case, no dy-
namic transition was found; this suggests that the equilib-
rium phase transition and the frozen-chaotic one are
strongly correlated. The latter recipe was not able to dis-
cern the sign of the nearest-neighbor interaction, giving a
similar dynamic transition for both ferromagnetic and an-
tiferromagnetic cases at a temperature which was sig-
nificantly different from the ferromagnetic Curie temper-
ature.

Therefore, the use of parallel algorithms for updating
spins is very questionable when one wishes to associate
dynamic properties in the long-time limit with equilibri-
um ones: Whereas for ferromagnetic systems it may lead
to an error in the estimation of the Curie temperature, for
more complex systems where frustration is present, e.g.,
spin glasses, it may induce nonexistent phase transitions.
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