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Distribution of Eigenmodes in a Superconducting Stadium Billiard with Chaotic Dynamics
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The complete sequence of 1060 eigenmodes with frequencies between 0.75 and 17.5 GHz of a quasi-
two-dimensional superconducting microwave resonator shaped like a quarter of a stadium billiard with a
Q value of Q = 10°-107 was measured for the first time. The semiclassical analysis is in good agreement
with the experimental data, and provides a new scheme for the statistical analysis and comparison with
predictions based on the Gaussian orthogonal ensemble.

PACS numbers: 05.45.+b

Quantum manifestations of classical chaos in systems
with few degrees of freedom can be studied experimental-
ly. In sufficiently flat microwave resonators, Maxwell’s
equations reduce to the Schrodinger equation for the free
particle, and the condition of classical chaos is realized by
properly shaping the cavity [1]. In this Letter, we report
on first measurements using a superconducting cavity.
The high-quality factor @ =f/Af (with f the frequency)
of 0 =10°-107 of this device allows us to measure for
the first time the complete spectrum below 17.5 GHz; we
find about 160 more eigenvalues than a similar experi-
ment at room temperature. We employ the semiclassical
approach and calculate for the first time iocations and
strengths of the peaks in the Fourier-transformed spec-
trum in terms of the shortest unstable classical periodic
orbits. We find good agreement with the data. We also
perform a statistical analysis of our spectrum; such an
analysis is meaningful only if the spectrum is complete
(no missing levels). We compare our results to those of
the Gaussian orthogonal ensemble (GOE), the standard
stochastic model for time-reversal invariant systems with
classically chaotic dynamics, and find deviations which
are successfully explained and quantitatively described by
the semiclassical approach.

Two-dimensional billiards are among the most thor-
oughly studied models for classical chaos and its quantum
manifestations [2]. The transition from integrable to
nonintegrable classical behavior can be studied by chang-
ing the shape of the billiard. On the quantum level, this
transition is accompanied by a crossover from Poisson
statistics to GOE statistics in the semiclassical region.
The properties of eigenfunctions and problems of chaotic
scattering have also received attention [3-11].

These theoretical studies have been put to an experi-
mental test only very recently [1,12,13] using microwave
excitation of quasi-two-dimensional cavities. The formal
similarity between the stationary Schrodinger and Helm-
holtz equations, the latter considered for frequencies f
below a critical frequency fmax Where the electrical field
distribution depends only on the planar variables x and y,
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renders such experiments suitable for the study of quan-
tum phenomena. The height d of the microwave cavity in
the z direction is bounded by d < ¢/2f max.

Here, we present results obtained with a superconduct-
ing niobium cavity with Q = 10°-107, which has the
shape of a quarter of a Bunimovich stadium billiard with
inner dimensions r =20 cm, a =36 cm, and height 4 =0.8
¢m (see upper right-hand corner of Fig. 1), corresponding
to y=a/r=1.8. With only a quarter of a stadium, one is
restricted to a single symmetry class of the full problem
[6]. The cavity has been put into one of the cryostats of
the new superconducting Darmstadt electron linear ac-
celerator S-DALINAC, where it was cooled down to 2 K
together with the accelerating structures [14]. As indi-
cated in Fig. 1, three antennas were located in small holes
(3 mm diameter). To keep their influence on the field
distributions negligibly small care was taken that they did
not penetrate into the cavity. Three independent trans-
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FIG. 1. Measured spectrum between 17 and 18 GHz. The
upper part is taken at room temperature (normally conducting);
the lower part at 2 K (superconducting). Inset: Illustration of
the shape of the resonator and the positions of the antennas.
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mission spectra were taken by using a vector network
analyzer and different combinations of the antennas. All
spectra were checked against each other for consistency
and finally combined into a single spectrum. It consists
of 1.8x10% data points in the range from 0.75 to 18.75
GHz. The step width of the measurement was 10 kHz.
The large signal-to-noise ratio (> 100) allows us to iden-
tify each resonance by taking many data points in the
tails. This is why we are almost certain not to have
missed any modes. Further support for this statement
derives from the fact that the smallest observed spacing is
300 kHz. In Fig. 1, the spectra in the range from 17 to
18 GHz measured at 7=2 and 300 K are shown for
comparison. The improvement of the resolution by about
3 orders of magnitude is striking. To ensure the two
dimensionality of the cavity the analysis of the spectra
has been confined to £ < 17.5 GHz [1]. Up to this fre-
quency 1060 eigenmodes were counted (compared to 898
modes at room temperature).

We analyzed these data in two ways: using the semi-
classical approach and the GOE.

The semiclassical theory suggests to express the level
density p(k)=2,8(k —k,), where n labels the eigen-
modes and k is the wave number, as a sum of a smooth
part p*™(k) [defined as the average of p(k) over a k in-
tervall and a fluctuating part p®(k) (with average zero).
Each part is associated with a different physical aspect.
Usually the smooth part p*™(k) relates to the volume of
the classical energy-allowed phase space. For billiards,
an improved version is given by the Weyl formula, which
also includes surface corrections
il
4rn
where A is the area of the billiard and P its perimeter.
Equation (1) does not contain any information regarding
the character of the underlying classical dynamics of the
system.

According to the Gutzwiller trace formula [15], the
fluctuating part of the density is given in terms of the
periodic orbits, the only elements of the classical dynam-
ics that manifestly survive quantization and are seen in
the spectrum:
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Here, the index u labels the periodic orbits and their re-
currences, M, their monodromy matrix, L, their length
over one period, and ¢, their Maslov index, where all u’s
are isolated. It is Eq. (2) that carries information regard-
ing the chaotic (or regular) character of the classical dy-
namics and the instability (or stability) of trajectories.

Unfortunately the Gutzwiller trace formula is not ap-
plicable to all orbits of the stadium billiard. There is a
family of nonisolated marginally stable periodic orbits
that bounce between the two straight segments of the bil-
liard. The presence of these orbits is manifested in the

explikL, —ig,]. (2)

spectrum in two different ways: First, there is an approx-
imate quantization rule given by k;r =jn. The experi-
mental data agree with this rule astonishingly well. We
were able to identify all predicted k; within a precision of
060 » a consequence of the extraordinary resolution of the
superconducting measurement. Second, there exists an
additional smooth effect in p(k) not accounted for by the
Weyl formula, which can be seen in Fig. 2: The cumula-
tive level density, N(k)=[§dk'p(k'), shows smooth
periodic oscillations (with fixed period 2x/r) around the
value given by the Weyl formula [16]. These facts can be
understood by the semiclassical analysis of the contribu-
tion of the bouncing ball orbits to the spectrum. This
contribution can be evaluated [17] by considering the
semiclassical propagator [see Eq. (12.21) in [15]] re-
stricted to trajectories that never leave the rectangular
sector of the billiard, K®°(q,q’,#). The procedure is then
standard: The Laplace transform of trK®(q,q',z) gives
the trace of the Green’s function due to the rectangular
sector, whose imaginary part is related to the spectral
density. The result is
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(3)
Equation (3) very nicely reproduces the experimental
data as can be seen in Fig. 2. This additional smooth
correction has to be added to the Weyl formula to obtain
the proper N (k) [or p>™(k)].
The effect of the isolated periodic orbits is most in-
structively displayed in the Fourier-transformed (FT)
spectrum of p(k),
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FIG. 2. The histogram gives the cumulative level density
N(k)—NW¥'(k) as a function of the wave number k. The
solid line shows the semiclassical prediction of Eq. (3) for the
contribution of the bouncing ball orbits. There is excellent

agreement between experiment and theory. The two are only
discernible at low and high wave numbers.
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where [k min, kmax) is the wave-number interval in which
data were taken. Equation (2) shows that to each isolat-
ed periodic orbit there corresponds a peak in the FT spec-
trum whose intensity is determined by the length and the
instability of the periodic orbit. In Fig. 3, we show the
power spectrum |g7(x)|? of p®(k) (solid line) compared
to the theoretical result (dashed line). The latter is ob-
tained by identifying the thirty shortest periodic orbits of
the system and by calculating their length and monodro-
my matrix [18]. We are able to reproduce most of the
amplitudes up to the length of x =2.3 m, where we start
to miss periodic orbits. For the peak at x =1.32 m corre-
sponding to the so-called “whispering gallery” orbits [6]
we summed the contribution of the ten most stable orbits.
For this family of orbits trM increases fast with the num-
ber of collisions with the circular part, so that orbits ap-
proaching the circle give a small contribution to the
power spectrum. However, we fail to reproduce the am-
plitude at x =1.37 m, possibly because it is due to a slight
geometry imperfection. The radius of curvature might
not change abruptly, but smoothly at the transition from
the straight to the circular section of the boundary, possi-
bly yielding several periodic orbits of similar length and
hence a broad big peak. For other peaks this small im-
precision (if this is the correct explanation) does not im-
ply a sizable effect. The peaks located at 1.6 and 2.0 m
are remanents of the bouncing ball orbits and are
suppressed by taking pf=p—pWer—pb® If pb is not
subtracted the power spectrum is dominated by the
bouncing ball orbit contribution as shown in the inset of
Fig. 3.

An interesting result is obtained when we include the
contribution of the bouncing ball orbits in the usual spec-
tral unfolding scheme [19] for the statistical analysis. A
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FIG. 3. Fourier transform of the fluctuating part of the spec-
trum p(k) —pW¥o'(k) —p®®(k). The result of a reconstruction
of the Fourier power spectrum using the thirty shortest classical
periodic orbits and Gutzwiller’s trace formula is given by the

dashed curve. Inset: The Fourier power spectrum of the mea-
sured density p(k) minus pV¥'(k).
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naive analysis using just the Weyl formula for N*™(k)
would show large deviations from the GOE prediction in
the usual statistical measures. This is consistent with
previous numerical results and analyses [7]. The in-
clusion of N®(k) in the unfolding scheme changes the
results quantitatively. For the unfolded spectrum the
correlation between neighboring level spacings is C
= —0.298 £ 0.030, in agreement with the GOE predict-
ing C=—0.271 [19]. For the nearest-neighbor spacing
distribution (NND) we performed a best fit with the
Brody distribution [20], which is given by P(s)=cs®
xexp(-qs"’“). The constants ¢ and ¢, are obtained
by the normalization constraints and ® is the repulsion
parameter. The best fit yields @ =0.82 = 0.07, the result
is displayed in the upper part of Fig. 4. For the NND the
effect is not very large, therefore, we only display the re-
sults for the unfolding where NWV®'+N® defines the
average cumulative level density. But for the A;(L)
statistics the difference is striking. The presence of mar-
ginally stable periodic orbits dramatically changes the ri-
gidity of the spectrum for large values of L (measured in
terms of the mean level spacing). Proper handling of
these orbits—as done here— brings the spectrum back to
the expected GOE-like behavior of classically chaotic sys-
tems. Moreover, the A3(L) statistics very closely follows
the GOE prediction up to L =20, where it saturates, as
predicted by Berry [21].
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FIG. 4. Nearest-neighbor spacing distributions (upper part).
The histogram corresponds to the data and the dashed lines to
the theoretical predictions. The solid line shows the best fit
with the Brody distribution (see text). Lower part: A3(L)
statistic of the experimental data set compared with theoretical
predictions (dashed lines). The circles (squares) derive from
the unfolded spectrum with (without) the bouncing ball orbit
contribution.
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In conclusion, we have presented data comprising the
complete spectrum of the first 1060 eigenvalues of the
Bunimovich stadium. The data are in good agreement
with semiclassics. The apparent discrepancy with the
GOE was explained by the presence of nonisolated mar-
ginally stable periodic orbits.
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