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We propose an experimental realization of a cryptographic-key-sharing scheme exploiting quantum
correlations between pair photons. Our experimental setup consists of an external source of correlated
photon pairs which propagate to two widely separated unbalanced Mach-Zehnder interferometers. The
probability of detection of photon pairs in any two outputs of the interferometers can be fully modulated

by phase plates in either interferometer.

PACS numbers: 03.65.8z, 42, 50.Wm, &9.70.+c

Quantum cryptography, a new branch of physics and

cryptology, employs quantum phenomena such as the un-

certainty principle and quantum correlations to protect
distributions of cryptographic keys. Key distribution is
defined as a procedure allowing two legitimate users of a
communication channel to establish two exact copies, one
copy for each user, of a random and secret sequence of
bits. This random sequence, meaningless as such, is

called a key and can subsequently be used as a basis for
encrypting messages between the two users. The security
of any further encrypted communication depends directly
on the security of the key distribution.

Conventional cryptography provides no tools for prov-
able security of the key distribution and any classical en-
coding is vulnerable to passive interception. Such inter-
ception may be difficult from the technological point of
view but is perfectly allowed by the laws of classical phys-
ics and therefore the two legitimate users can never be
sure that there exist only two and no more copies of the
key.

In a simplistic way, any totally passive eavesdropping
can be viewed as a two-stage process. The first stage
amounts to making a copy of the carrier of information
and the second to reading from the cloned copy (or
copies) a set of values of observables that are used for the
encoding of the key. The intercepted original carrier is

sent over to the legitimate receiver, who is unable to
check whether the carrier has been intercepted or not be-
cause the state of the carrier has not been altered during
the cloning process. According to quantum theory the
first stage of passive eavesdropping cannot in general be
completed [1]. Quantum cloning will give a positive re-
sult leaving the state of the original intact only if the ad-
versary knows in advance that the carrier of information
is in a quantum state picked up from a particular set of
orthonormal states. If this is not the case, the adversary
will not be able to construct a cloning device; a device of
this sort would eff'ectively violate the uncertainty princi-
ple enabling measurements of noncommuting observables
on diA'erent copies of the carrier. This shows that coding
based, for example, on nonorthogonal states or quantum
correlations which cannot be cloned gives a chance to
avoid eavesdropping.

Quantum cryptography, which employs quantum
mechanics to improve the security of communication, was
originated by Bennett, Brassard, and Wiesner [2,3].
Theoretical models for quantum key distributions based
on the uncertainty principle have been analyzed by Ben-
nett and Brassard [3] and models based on quantum
correlations have been proposed by Ekert [4]. The first
practical implementation of the cryptosystem based on
the uncertainty principle has been performed by Bennett,
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Bessette, Brassard, Salvail, and Smolin [5]; here we de-
scribe a practical realization of a quantum channel which
distributes the key and protects it against eavesdropping
using the nature of quantum correlations.

A scheme of the apparatus is shown in Fig. 1. A para-
metric down-conversion source is pumped by a mono-

chromatic short-wavelength laser of frequency 2coo (kp
=441.6 nm in the experiment). Signal and idler photons
are emitted in a broadband cone behind the crystal with

pairs satisfying energy and momentum conservation.
Photon pairs are selected by placing apertures in the
down-converted cone satisfying the phase-matching con-
ditions in the crystal. Signal and idler photons are
launched into separate fiber-optic cables and propagate to
remote Mach-Zehnder inter ferometers. Each interferom-
eter contains a shorter and a longer path with the
diAerence in transit time over the two paths denoted by
hT (AT= I ns in the experiment). Signal photon detec-
tors labeled Si and So and idler detectors labeled Ii and

Io view the four Mach-Zehnder outputs.
This experimental setup has been analyzed in detail by

Franson [6] and by Rarity and Tapster [7] in connection
with Bell s inequalities. Here, we present a simplified but
sufficient description of the nonlocal correlation phenom-
enon that can be observed in this system.

We assume that the output state is a two-photon entan-

gled state of the signal and the idler, which we write as

where we can choose m to denote the frequency of the sig-
nal photon cu„and consequently, due to energy conserva-
tion, the frequency of the idler photon co; can be written
as 2ND N.

The function ic(cu)i is positive in the interval of the
order h, co centered at coo. The calculation of the joint
probability of registering photons at time t+dt by the
signal and idler detectors amounts to summing the proba-
bility amplitudes for the photons to have traversed vari-
ous paths to the detectors and taking the square modulus
of the total probability amplitude. If we take into ac-
count that I/Aru((AT (AX=3 nm in the experiment),
then after simple calculations we obtain

p(1, 1) =p(0, 0) = —,
' [1+cos(y, + y;+ 0)],

p(0, 1) =p(1,0) = —,
' [1 —cos(y, +y;+8)], (3)

where the signal phase shift p, and idler phase shift p;
can be set up independently in the respective interferome-
ters, and 8= (ru, + ru; )hT = 2ruohT In ou. r notation

p(0, 1) means that the signal photon has been registered
by detector So and the idler photon has been registered

by detector Ii within the small time interval dt &&hT.
The coefficient of correlation, assuming perfect detection
and fixing 8=2kz, k =1,2, 3, . . . , is given by

J(P„P;)=p(I, I )+p(0, 0) —p(0, 1) —p(1,0)

=cos(p, +p;) .

i+) = dcuc(ru)il;cu) 8 i I;2ruo —ru), (I)
The coefficient depends on the sum of two local parame-
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FIG. 1. Scheme of the quantum public key distribution apparatus. A short-wavelength laser illuminates a suitably cut nonlinear

crystal. Apertures Az and Al select photon pair beams which are launched into single-mode fibers by lenses L. Identical Mach-
Zehnder interferometers are placed in the signal and idler arms of the apparatus and interferometer outputs are viewed by signal

&0,5i and idler lo, li single-photon counting detectors. Alice and Bob view these outputs and confirm coincident (within di) photon
detections and relevant phase settings p„p; via a separate public channel.
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ters p, and p;, which results in a nonlocal character of
correlation between the photocounts in the two distant in-

terferometers. We note that for p, +p; =0 there is a per-
fect correlation between photocounts in the two distant
interferometers. Let us now describe how this nonlocal
quantum phenomenon can be used for key distribution.

Two legitimate users of the two distant interferometers,
whom we traditionally call Alice and Bob, will set up the
local parameters randomly and independently for each in-

coming photon. Alice, who receives the signal mode, will

choose randomly between It, =0 and p, =tr/2, and Bob,
who receives the idler mode, will choose randomly be-
tween p; =0 and p; = —tr/2. After transmission they re-
veal publicly the setting of their local parameters, but not
which detector registered a photon. They then agree to
discard all instances in which Ili, +p;WO, as well as in-

stances in which one or both detectors failed to register a
photon due to imperfect quantum efficiency. The remain-
ing instances ought to refer to perfectly correlated photo-
counts, p, +p;=0. To verify that this is so, Alice and
Bob publicly compare the results of the photocounts on a
sufficiently large random subset of the undiscarded in-

stances. If they find that the tested subset is indeed per-
fectly correlated, they can infer that the remaining un-
tested subset is also perfectly correlated, and therefore
can form the cryptographic key. In a practical realiza-
tion the test for eavesdropping must be more sophisticat-
ed than the subset test described above. A more useful
test involves error-correction and hashing techniques
[S,8].

Nonlocal interference effects of this type have been ob-
served in short-range laboratory experiments with mea-
sured correlation coefficients J [Eq. (4)] up to 90%
[9,10]. We have performed a preliminary experiment
where one beam propagated over 170 m through a mul-
timode optical fiber before the interferometer, but here
the measured correlation coefficient was low, partly due
to poor time resolution in the detectors [7]. Such an ex-
periment could easily be improved by using single-mode
fiber and in-line fiber interferometers (Fig. I). To ensure
high visibility the detector resolution dt must be smaller
than the time difference between the long and short
paths, h, T, to discriminate against noninterfering events.
In an all fiber apparatus, dispersion effects in the out-of-
balance interferometers can be avoided by reduction of
bandwidth and operation close to the dispersion minimum
(1.3 Itm in conventional fibers). This choice also has the
advantage of low loss but requires further development of
suitable photon counting detectors [I I]. With careful
control of the apparatus, correlation coefficients greater
than J=0.95 should routinely be achieved. This implies
a high-bit error rate of 5x 10 . This can be substantial-
ly reduced without compromising security using suitable
error-correction procedures [8]. The range of a realistic
system will depend on losses, which in communication
fibers can be as low as 0.17 dB/km, coupled with the

minimum acceptable data rate. Recent free-space com-
munication experiments have demonstrated that propaga-
tion losses of some 20 dB or more could be tolerated [12].

The analysis of the security of this system is equivalent
to the analysis of the security for the EPR-type cryp-
tosystems provided by Ekert [4] and Bennett, Brassard,
and Mermin [13]. The advantage of this system over

these previous schemes is that it uses interference rather
than polarization phenomena. Maintaining polarization
in optical fiber (without in effect measuring it) is not pos-
sible using present technology. Using standard low-loss,
low-dispersion communication fiber and polarization-
insensitive interferometers our system may be capable of
key sharing over long (-10-20 km) distances.

One of us (G.M.P.) acknowledges partial financial sup-

port from the Italian INFM and GNSM. He would like
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/Vote added. —After we submitted the paper we

learned about the new, non-EPR interferometric key dis-

tribution scheme proposed recently by Bennett [14].
Bennett's system will increase the key distribution range
to a level comparable with our estimated range. As yet,
there is insufficient ground to conclude which of the
schemes is more practical.
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