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Hall Conductance and Adiabatic Charge Transport of Leaky Tori
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Leaky tori are two-dimensional surfaces with g handles and r horns (punctures) that extend to
infinity. They model certain features of mesoscopic systems with multiple Aharonov-Bohm-type
geometries connected to infinitely long leads. For a large class of leaky tori with finite area, in the pres-
ence of a constant magnetic field and threading fluxes, we calculate exactly the persistent currents, adia-
batic charge transport, and the (appropriately defined) Hall conductances.

PACS numbers: 72.10.Bg, 03.65.—w

Leaky tori, a term coined by Gutzwiller [I], are two-
dimensional analytic surfaces with g handles and r punc-
tures. The metric near the punctures is such that it de-
scribes infinitely long horns. An example with one handle
and two horns is shown in Fig. 1. Leaky tori with finite
area have horns (called cusps by mathematicians) that
are effectively one dimensional near infinity and capture
some of the features of mesoscopic systems which are
multiply connected and connect to infinitely long, one-
dimensional, leads. Unlike mesoscopic systems, leaky tori
have no boundaries at finite distances.

Aharonov-Bohm Auxes for leaky tori fall into three dis-

tinct classes: r Auxes p~, j =1, . . . , r, which thread the

horns; 2g Auxes PJ, j =r+1, . . . , r+2g, through the g
handles; and Auxes that pierce the surface. %e shall take
one piercing Aux IIio. We denote the Auxes collectively by

III and with the piercing Aux excluded by I3).

%ith such a surface we associate a Landau Hamiltoni-
an (the Schrodinger operator in magnetic field 8)
H(8, $). We shall describe exact results for (1) the low-

lying eigenvalues E„(8,&) and their degeneracies; (2) the
2g+r persistent currents associated to the jth Aux and
nth eigenvalue defined by —t)+E„; (3) the charges trans-
ported from infinity along the ith horn and then back to
infinity along the jth horn when some of the Auxes

change adiabatically by a unit of quantum Aux; and (4)
the Hall conductances at fixed Fermi energy EF, set in a

gap [2].
The results hold for a large class of leaky tori in the

presence of a constant magnetic field B, and parts extend IE z
Z3

to more general surfaces and Hamiltonians. For reasons
of space, we shall merely outline the basic strategies in-
volved in the more mathematical issues. Detailed proofs
shall be presented elsewhere [3].

Leaky tori with finite volume and constant Gaussian
curvature E = —

1 can be represented as the quotient of
the complex upper half plane H, with the Poincare metric
ds =y (dx +dy ), by some discrete subgroup I of
SL(2,IR) [4]. Thus the surface is represented by a
polygon in H (the boundary of a fundamental domain)
with appropriate identifications of the sides. Recall that
the geodesics are semicircles centered on the boundary of
H, |)H [y =0] U [~], and the sides of the polygon can
be taken to be circular arcs. Each horn corresponds to a
cusplike vertex of the polygon (with zero opening angle)
on t)H. A fundamental polygon for the leaky torus of
Fig. 1 is shown in Fig. 2. Specification of curvature,
number of horns, and number of handles does not fix a
unique surface, but a choice of I does (up to translations,
scaling, and hyperbolic rotations —the isometrics of H).
There is a [6(g —1)+2r]-dimensional family of such

leaky tori, known as the moduli space. Our results turn
out to be completely independent of the choice of the
point in the moduli space.

By the Gauss-Bonnet theorem we have JK =2tr(2 —2g
r). Therefore, the—area is 2tt(2g+r —2). We set

—h K/2m =1, and choose the quantum Aux unit to be

Zp Zp Zl Z~ Zp

FIG. 1. Leaky torus with one handle and two horns. p3 is a
Aux threading the handle and &0 is a piercing flux at zo.

FIG. 2. The fundamental domain (polygon) for the leaky

torus with one handle and two horns. The arrows show the

identifications. All cusps except zi are identified. The points

z3,z4 are base points used in the text to define the handle flux;

see Eq. (4).
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2x.
Because of the negative curvature, the geodesic Aow on

such surfaces is chaotic. The Laplacian associated with

compact multihandle tori has been studied in the context
of chaology [1,5,6]. In classical dynamics at low ener-

gies, [0,8 ), the Lorentz force dominates and one finds

closed orbits, while at high energies, (8,~), the negative
curvature dominates and the dynamics is (presumably)
chaotic [7].

We take 8~ 1, i.e., the magnetic field (two-form)

By dxAdy is a positive multiple of the area form.
(Think of 8 as drawn outwardly normal. ) The orienta-
tion of the surface fixes an orientation for the loops that
encircle the piercing and horn Auxes. (Think of these
fluxes as penetrating the surface. ) The orientation of the
surface does not pick a direction for the loops that encir-
cle the handles: For each handle one arbitrarily chooses
a direction for one loop and the direction for the second
loop is then fixed by the orientation of the surface.

The fluxes and 8 are external parameters in the
Schrodinger operator. They are related by a type of
Dirac quantization condition

8 —
yn

—gy, -o (mod2tr).

Note that the fluxes through the handles do not enter this
relation, while the horn and piercing Auxes do.

Representing a leaky torus as a fundamental domain
for a group I and using the fixed gauge Ao y '8 dx,
the Schrodinger operator for noninteracting spinless elec-
trons, with po 0, is

H(B,P) y (—8, —8s)+2iBy8, +8
acting on functions which satisfy

(cz+d)'a
y(yz) u(y, z)y(z), u(y, z)=—vp(y) cz+ d

(2)

Here y (;d) C I acts on H as a Mobius transformation,
and v&(y), a complex number of modulus one, is a multi-
plier system on I associated to the fluxes. The twisted
"periodicity" condition in Eq. (3) is the analog of the fa-
miliar twisted boundary condition for flat tori [8]; in both
cases the notion of periodicity takes into account gauge
transformations that connect two "unit cells." The prop-
erties of a multiplier system are the consistency condi-
tions ensuring univaluedness of the wave function on the
universal covering space, namely, v&(

—1)=e ' and

u(yiyz, z) =u(yi, y2z)u(yz, z), yi, y2C I .

We fix the relation of multipliers to fluxes by setting

in the fundamental polygon which dissect the g handles,
and zj is an arbitrary reference point on such a side.
(There is no distinguished reference point on the 2g
dimensional torus of handle fluxes which naturally corre-
sponds to zero flux. ) A piercing flux at zv can be added

via the usual vector potential, singular at zo.
The spectral analysis of Schrodinger operators with

magnetic fields and flux tubes on leaky tori has a very

long history in the theory of automorphic forms, where it
is known as the spectral analysis of the Maass-Selberg
Laplacian for nonclassical automorphic forms of real
weight with multipliers [9]. Below we list some key facts.
Towards the end of this Letter we shall indicate how they
can be derived.

One distinguishes four energy ranges: (—~,8), which

is outside the spectrum; low energies [8,8z), where the
spectrum is reminiscent of the usual Landau levels in the

plane; intermediate energies (8,8 + —,
' ), where except

for being discrete little is known about the spectrum; and

high energies (82+ 4,~), which admit scattering states
if at least one horn flux is zero.

Scattering states Eac.h—horn which is threaded by a
flux tube carrying an integer number offlux quanta is an

open scattering channel. Each such scattering channel
contributes the interval of energies [—,

' +8,~), with

multiplicity 1, to the absolutely continuous spectrum.
Horns that carry fluxes which are not integral are in some
sense plugged, and a particle cannot leak through such
horns to infinity. If all the horns are plugged, the spec-
trum in [—,

' +8,~) is discrete.
Maass supersymmetry. —For 8~ 1 and fixed multi-

plier system v&(y), the spectrum of H(8) coincides with

the spectrum of H(8+1) —(28+1) with the ground
state removed, counting multiplicity.

Spectrum of Landau levels when &0 0.—In the inter-
val of energies [8,82], 8~ I, for $0=0, the spectrum
has [8—

z ] points at energies

where [x] denotes the integer part of x. E„depndes ex-
plicitly on 8 only, and implicitly on the horn Auxes

through the Dirac quantization condition. It is complete-
ly independent of the fluxes through the handles [10].

Degeneracy of Landau levels when &0 0.—Like the
Landau levels on the Aat torus, the energies in Eq. (5)
are in general degenerate. Unlike them their degeneracy
decreases with energy. Let ixJ be the greatest integer
strictly smaller than x and set [x]—=x —ixj E (0, 1]. The
degeneracy of the nth Landau level is then given by

u(yi ,zj) e ',. 1 ~j (2g+r, (4) D(n, &0 0) = (8 n)(2g —2+r)—
where, for 1 ~j~ r, zj is the site of the jth cusp, and yj
generates the subgroup of I that leaves zj fixed. For
r+1 ~j~ r+2g, yj is a transformation identifying sides

(6)

129



VOLUME 69, NUMBER 1 PH YSICAL REVI E% LETTERS 6 JUL& 1992

By Dirac quantization, the right-hand side of Eq. (6) is
an integer. Equations (5) and (6) are invariant under de-
formations of the leaky torus within the moduli space.
Since generically the spectrum and degeneracies are sen-

sitive to deformations, this invariance is remarkable,
especially since the dimension of the moduli space can be
large. In particular, it will follow from this invariance
that the transport properties we shall calculate are con-
stant on the moduli space.

Adiabatic charge transport. —Suppose that initially all
horn fluxes are noninteger. Thus, all horns are plugged.
Now vary two of the horn fluxes, e.g. , along the line

P;+PJ consta0 (mod2x) by decreasing p; by 2n. The
initial and final Hamiltonians are unitarily equivalent:

Up to a gauge transformation, the Schrodinger operator
underwent a closed cycle. In particular, the initial and
final spectra, counting multiplicity, coincide. As in

Laughlin's original argument, this cycle can transport net
charge, and indeed it does: As p; passes through an in-

tegral flux quantum, horn i opens briefly and, according
to Eq. (6), one state per Landau level is sucked in from

(spatial) infinity. As p~ passes through an integral flux

quantum, these additional states disappear at (spatial)
infinity via horn j. If N Landau levels are occupied, N
charges will be transported. The cycle describes a quan-
tum charge pump which transports integer charges. It is

noteworthy that it gives integral adiabatic charge trans-

port for systems whose area is finite. In the Hall effect
and in the Niu charge pump [11]precise integers require
the thermodynamic limit.

Hall conductance For .—the plane Laughlin defines the
Hall conductance as the charge transported to infinity by
increasing the piercing flux by 2tr. In the present context
the charge can be transported to infinity along any of the
r horns, and moreover, by Dirac quantization, the

piercing flux cannot be varied independently. We there-
fore define the jth Hall conductance as the charge Qj
transported to infinity along the jth horn, increasing po by
2n along the path &0+&J const. All these r Hall con-
ductances turn out to be identical. Unfortunately, since

Eqs. (5) and (6) hold for &0 0, we cannot directly follow

the charge transport along the path po+pj const. To
compute the charge transport we therefore deform the
path: First, the tto increase is compensated by an increase
in 8 by 2tr/area. This changes the degeneracy of all Lan
dau levels by 1. Then 8 decreases to its original value at
the expense of the jth horn Aux. This sends one particle
per Landau level to infinity along the jth horn, while the
Hamiltonian returns to its initial form up to unitary
equivalence. We see that the Hall conductance of each
Landau level (for noninteracting electrons) is unityfor,
all leaky tori, if the magnetic field is large enough, i.e.,
8» 1.

It is of interest to see where the charge is transported
from. To see what happens we argue as follows: Consid-
er first plugging all the horns by choosing the horn Auxes

appropriately. None of the new states can arrive from
infinity because the horns are plugged. Instead, the states
must come from high energies.

These results for the Hall conductances are a sweeping
generalization of what one knows for Landau levels in the
plane where, interestingly enough, the condition on the
strength of 8 does not enter [12].

The energy and degeneracies are independent of the
cruxes through any of the handles, and so is Dirac quanti-
zation. It follows that manipulating handle fluxes only
does not transport any charge from infinity even if the
horns are open.

Persistent currents. —Equations (5) and (6) determine
(most of) the persistent currents for the Landau levels
in the absence of piercing fluxes. (1) The persistent
currents around the handles vanish. (2) Setting 8&,

(area) 8s in view of the Dirac quantization condi-
tion, the persistent current associated to pj in the jth horn
and the full nth Landau level is equal to

8&,E„(2n+ 1)D(n, po 0)/2n(2g —2+ r) .

Having the same sign for different energy levels, these
currents add up coherently (while in a flux driven ring
they have alternating sign). (3) The persistent currents
around the piercing flux involve variation in &0 and can-
not be calculated from Eqs. (5) and (6) alone.

We now briefly outline a derivation of Eqs. (1), (5),
and (6). Equation (5) can be found, e.g. , in Rolcke [9].
Equations (1) and (6) do not appear in the literature in

the form given here, because the notion of fluxes is

foreign to the tradition of the theory of automorphic
forms, which instead has been dominated by the notion of
rnultipliers described above. Multipliers are related to
fluxes by Eq. (4), but, unfortunately, are not gauge in-

variant. Once one establishes Eq. (4) and uses the
correspondence between classical automorphic (cusp)
forms and the L2 eigenfunctions of H(B,P) (see, e.g.,
Rolcke), Eq. (6) can be found in Hejhal or Petersson [9].
Both the Dirac quantization condition and the formula
for the degeneracy are due to Petersson, and go back to
1938. His proof of the degeneracy formula is based on
the Riemann-Roch theorem. In [3] we plan to give
derivations of Eqs. (1), (5), and (6) motivated by quan-
tum mechanics rather than automorphic forms and ana-

lytic number theory. The basic tool is Maass supersym-

metry which identifies the ground-state degeneracy with

an index which can be computed from the small time
asymptotics of the heat kernel. Because of the punctures
the manifold is noncompact, and one needs to compute
corrections to the heat kernel from the boundaries. Like
most higher-order corrections to the heat kernel, this is a
computational eA'ort. The boundary terms lead to the
flux-dependent terms in Eq. (6) (the handle fluxes drop
because they are not boundary terms). The fluxes may
be thought of as a one-dimensional version of the three-
dimensional rt invariant for the signature [13].
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We close with remarks on open problems. (1) The no-

tion of Hall conductance used here can naturally be gen-
eralized to leaky tori with infinite area where Deg(n)

~, along the lines of [14]. Since the Hall conductance
for leaky tori is area independent, it is natural to conjec-
ture that the Hall conductance for each Landau level is

unity also for leaky tori with infinite area, but we have no

proof which holds in any generality. For the entire upper
half plane, however, this holds by explicit computation.
(2) There are additional (qe) interesting adiabatic trans-

port coefficients associated with transport of charges
around the handles due to the fluxes through the handles.
Such transport coefl]cients are related to first Chem
classes [15]. From the spectral results in this paper it fol-

lows that, since variation of the handle fluxes never gives
level crossing, all these first Chem classes as well as
higher Chem classes are constant on the moduli space.
By analogy with other adiabatic transport coefficients, we

expect some of them to be nontrivial in general.
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