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Anomalous Little-Parks Oscillations in Mesoscopic Loops
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Anomalous resistance oscillations have been observed in mesoscopic superconducting Al loops. As for
the classical Little-Parks effect, the oscillation period is governed by the superconducting fluxoid quanti-
zatIon. The oscillation amplitude shows, however, an unusual magnetic-field and current dependence for
low flux quanta, which is completely different from the Little-Parks oscillations.

PACS numbers: 74.90.+n, 72. 15.Gd, 74.30.—e

It is well established that in small thin-walled super-

conducting cylinders, the transition temperature T, is an.
oscillatory function of the magnetic field H [1]. The T,
oscillations, which are usually referred to as the Little-
Parks (LP) oscillations [2], result from the fluxoid quant-

ization, which implies that the sum of the externally ap-

plied magnetic flux itt and the flux induced by the super-
conducting screening currents is quantized in units of the
flux quantum go=he/2e. While the screening currents
are absent when p=ntttp, the screening currents reach
their maximum amplitude when p=(n+ & )tttp, resulting

in a maximum depression of T, for the latter flux values.
Experimentally [2-4] the LP oscillations of T, can be ob-
served as a periodic variation of the resistance with mag-
netic field at a fixed temperature T=T*, usually taken
near the midpoint of the normal-to-superconducting (N-
S) transition. In this case the R(T =T*, H) dependence
is characterized by a regular appearance of resistance
minima in magnetic fields H„corresponding to tj tttttpn

The earlier experiments [2-4] also indicated that the N-S
phase boundary is slightly shifted towards lower tempera-
tures at higher measuring currents I, but the shape and
relative amplitude of the resistance peaks are quite in-

sensitive to the variation of I.
In this Letter we report on our experimental observa-

tion of unusual magnetoresistance oscillations R(H) in

mesoscopic superconducting loops, which are character-
ized by (i) a peculiar nonmonotonous variation of the

R(H) oscillation amplitude with magnetic field, (ii) a

strong dependence of the oscillation amplitude on the ap-

plied current, and (iii) a field enhancement of the transi-

tion temperature T, for a small number of flux quanta.
Tkese observations are directly related to the problem of
quantum interference in elementary cells forming super-
conducting networks [5]. The advantage of using mesos-

copic samples is that they are sufticiently small to fulfill

the interference condition g(T) —r (r is the loop radius)
and at the same time large enough for studying typical
quantum efTects up to a pm length scale.

The mesoscopic Al loops are prepared using a Carn-

bridge Instruments EBMF' 10.5 electron-beam system
operating at 20 kV. Using a bilayer resist, square liftoff

profiles are obtained with size ranging between 1 and 2

pm and a linewidth of 0.15 pm (see inset in Fig. I).
Thermal evaporation of high-purity Al (99.9995%) is

used to deposit the 25-nm-thick Al lines in the liftofT

profiles. The substrates are Si wafers on which a 50-nm-
thick Si3N4 layer has been deposited. In order to obtain a
smooth film surface without any cracks at the grain boun-
daries, the evaporation is done in a reduced helium atmo-
sphere (p=10 ' Torr). The measurements are per-
formed in a standard helium-3 cryostat allowing us to
vary the temperature between 0.4 and 20 K. The applied
magnetic field, which is produced by a superconducting
coil, never exceeded 200 Oe. The position of zero mag-
netic field was determined within 1 Oe from the critic, &l

field of a bulk Al wire. Using a commercial four-
terminal ac resistance bridge (Lineair Research 400)
voltage variations smaller than 1 nV could be detected.

The sheet resistance Rp of the thin Al films used f'or
the loop structures varied between 1.6 and 1.8 D/c) at 4.2

K, indicating the metallic character of our weakly disor-
dered Al structures. The resistance ratio R(300 K)j
R(4.2 K) ranges between 2.02 and 2. 10 and corresponds
to a mean free path i=15 nm; i.e., t is comparable to the
film thickness t =25 nm. The measured resistance ratio
and the sheet resistance as well as our studies of the film

topography with an atomic force microscope confirm the

homogeneity and the continuity of the Al lines.
We have investigated in detail the N-S phase boundary

for four square loops with a size of 1 X1 pm-;ind for two

square loops with a size of 2&2 pm . For the same loop
size the data are completely reproducible from sample to
sample. The unusual Lp oscillations also appear to be «n

equilibrium property of the loop structures: I=ie)d cool-
ing, zero-field cooling, and reversal of the magnetic field

do not affect the results. In what follows we will focus
our attention on the measurements of the 1 & 1 pm- loops.

Typical R(T) transitions for different currents and ap-
plied fields are shown in Fig. l. Several interesting
features characterize the N-S transition. First, the R(T)
curve for I =0.3 pA and H =0 shows a n)arl. ed resis-
tance inc.rease at temperatures just above T, . . This peak
in the R(T) dependence is suppressed by applying a we;ik
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ependence of the loop resistance for
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rows mark the fixed temperatures where the R(H) data of Fi .
2 have been obtained. Inset: Th Al 1e oop geometry used.
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field sweep isotherm at T =T*. Th d 1
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etailed view of the anomalous field enhancement of T, for low
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FIG. 3. Inflnfluence of the measuring current on the magnetic-
ux in units of the Ilux quantum) dependence of the loop resis-

tance measured at the same normaliz d d d

T, I =0.99.
a ize re uceu temperature

measurements (see Figs. 2 and 3). The displayed bound-

ary corresponds to a threshold value R=2 A. Compar-

ing the results shown in Fig. 4 and in the inset of Fig. 4
we may conclude that the details of the phase boundary

(including the field enhancement of T, ) are insensitive to
the choice of the threshold value for the superconducting
order parameter, which is used to reconstruct the bound-

ary. As illustrated by the inset of Fig. 4, the field

enhancement of T, also appears symmetric 1 b
'

a a out zero
e an is observed up to p/go=2, corresponding to a

magnetic field 0=40 Oe.
Empirically, the exotic variation of the R(H) oscilla-

tion amplitude (see Fig. 2) can be directly related to an

anomalous field dependence of the distance hT between

the field sweep line at T = T* and th e experimental

T, (H) phase boundary, which are shown in Fig. 4. In the

same way the modification of the R(H) oscillation pat-

anomalous current dependence of the distance h, T.
Theoreticall I 1&y I &, the phase boundary of mesocopic su-

perconducting loops is expected to depend strongly upon
the ratio between the loop size and the Ginzburg-Landau
coherence length g(T):

g(T) =g(0)
T Tp

where g(0) =0.85((ol) '~ for our Al lines, which are in

the dirty limit, i.e. , i=15 nm « ( =1.6 . Th c-pm. The re-
sulting coherence length ((0)=130 ' '

dnm is in good agree-
ment with the value g(0) =120 nm determined from the
quadratic background of the T, (H) dependence in our
samples (see dotted line in Fig. 4).

The hasep e boundary of a mesoscopic loop with vanish-

ing y small linewidth has been calculated b Fink L'
and M aynard [10]. For a circular loop with radius r and
symmetrical current leads the N-S t t'ransition is given by

where the constant 3 is determined by the normal-state
transport properties. When the current density J is fixed,

the solution of Eq. (2) for diff'erent p/po values is deter-
mined by the ratio r/g(T), with the temperature depen

dence of the Ginzburg-Landau coherence length ((T)
g y q. &1~. For our low measuring currents thegiven b E. 1

limit J 0 shouou!d e appropriate. The correspondin

phase diagram, which consists of several chainlike normal

areas (white areas) at values of r/g(T) =1,2, . . . , is

shown in Fig. 5. The oscillating boundary between T, ,

cal LP oscillations (boldfaced curve in Fig. 5) [1].
It is important to note that the result (2) has been ob-

tained from the linearized Ginzburg-Landau equation.
At lower temperatures the nonlinear term will become
important and may destroy the additional norm l ha c ains,
w ic appear for r/j (T) & —,

' . Nevertheless, the ex-

istence of areas with a diA'erent superconducting order
parameter (diA'erent critical current density) is still plau-

sible 11]. The chain at r/g(T) =1, which is closest to
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FIG. 5. The H Tphas-e diagram corresponding to Eq. (2).
The white areas correspond to the normal (N) regions, while

the hatched areas correspond to the superconducting (S) state.
The dash-dotted line represents a field-sweep path. This tilted

path takes into account the shift of the superconducting regions
towards lower temperatures with increasing field strength, due

to the finite linewidth of the mesoscopic loop structures.

T„, should induce the most pronounced eA'ect. The ex-
istence of this chain makes it possible to assume that the
observed R (H) oscillations are caused by successive
crossing of the N-S boundaries by a tilted field-sweep line

(dash-dotted line in Fig. 5). The tilt of the field-sweep
takes into account the expected shift towards lower tem-
peratures of the superconducting areas with increasing

p/po, due to the finite linewidth of the loop structure. In-

creasing the current density J in Eq. (2) leads to a
shrinking of the superconducting areas in Fig. 5 and may
cause the change of the R(H) oscillations with current
(see results shown in Fig. 3). A complete theoretical un-

derstanding of the N-S boundary will, however, also re-

quire an explanation for the anomalous resistance peak
above T, (see Fig. I), which strongly depends on the
magnetic field and the measuring current [6,7].

In conclusion, we have observed anomalous Little-
Parks oscillations in mesoscopic superconducting loops.
The oscillation amplitude shows a pronounced magnetic-

field and current dependence for small values of the nor-
malized I]ux tl)/It)o. These features are probably closely re-

lated to the anomalous field enhancement of T, as well as
to the anomalous resistance bump, which appears above
TC ~
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