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Saddle-Point Pairing: An Electronic Mechanism for Superconductivity
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It is shown that the interactions in a strongly correlated quasi-two-dimensional electron gas with the
Fermi level lying at a saddle point (Van Hove singularity) in sk can give rise to superconductivity by ex-
change of excitations with a characteristic low electronic energy scale F. *. Application to cuprate super-
conductors shows that this mechanism along with a conventional electron-phonon interaction can explain
the high T, 's and the anomalous behavior of the isotope shift as a function of doping.

PACS numbers: 74.65.+n

Electronic pairing mechanisms, proposed in the context
of potential high-temperature s-wave superconductors,
remain subject to the long-standing problem of identify-
ing an electronic energy scale low enough relative to the
Fermi energy so as to satisfy [1] the Migdal theorem and
to renormalize the Coulomb repulsion. So far no electron-
ically paired s-wave superconductors have ever been con-
vincingly identified.

In this paper we present a new electronic pairing mech-
anism which does have a low-energy scale and which un-

der the right conditions can lead to high-temperature su-

perconductivity. This pairing mechanism arises in

strongly interacting quasi-2D electron systems having the
Fermi level close to a logarithmic Van Hove singularity
in the density of states (DOS), at which point the energy
surfaces form a saddle point (Fermi surface nesting is not
desirable). This type of Fermi system has unusual low-

frequency electron-hole excitations, which provide a de-

cay channel for an excited quasiparticle, leading to an
anomalously large quasiparticle lifetime broadening
[2-4] 1/r, scaling linearly with quasiparticle energy ru

from the Fermi level [2,3] instead of the usual cu depen-
dence. Here we shall show that the exchange of the same
low-frequency excitations gives rise to a strongly q- and
e-dependent interquasiparticle interaction which leads to
pairing. Although the electron-hole excitations them-
selves (unlike phonons) do not have any characteristic
low-energy scale, they manifest the new scale in their
coupling to quasiparticles.

The cuprate superconductors supply all the conditions
for the new pairing mechanism to occur. They are nearly
2D strongly interacting electron systems, band structure
[4] and angle-resolved photoemission data [4] support the
presence of the Van Hove singularity (VHS) near sF, and
evidence for the linear dependence of 1/r on quasiparticle
energy [2-5] exists. Discussion of other phenomena asso-
ciated with the VHS may be found in available reviews
[6]. However, it has not been possible to achieve ade-
quate T, 's and the extremely low observed isotope shifts
for the cuprates within a convincingly parametrized
strong-coupling framework [7] based on phonons alone,
even when the VHS is taken into account. In this paper
we show as an application of the electronic pairing mech-
anism that it does lead to high T, 's and very low isotope

shifts, awhile correctly describing the trend of isotope shift
[8-10] as the Fermi level is displaced away from the
VHS.

The basic model, from which the quasiparticle interac-
tions can be derived, is the strongly interacting one,
which is widely accepted for the cuprates, in which the lo-
cal short-range Coulomb interaction U between electrons
is taken to be much larger than the kinetic energy terms.
An initial Fermi-liquid solution to this strong-interaction
problem, derived for example from the extensively stud-
ied slave-boson mean-field approach, can be assumed to
be very close to reality, based on its consistency with pho-
toemission data on both the band dispersion [11] and the
shape of the Luttinger Fermi surface [11,12]. This for-
mulation, involving a 1/N expansion, gives a convenient
expression for the quasiparticle-quasiparticle interaction
at the 1/N level, which has been used in several earlier
treatments of superconductivity in strongly correlated
systems [13]. These treatments, however, did not take
into account the possibility of the Fermi level lying near a
VHS.

The interquasiparticle interaction V«(q, ru) to order
1/N in the slave-boson theory comes from single slave-
boson exchange [Fig. 1(a)] and is given by the slave-
boson propagator D(q, ru) Auseful lo. w-frequency ap-
proximation to D(q, co) (which is in general a 2X2 ma-
trix) is given by [14]

V,1r(q, ru) = 1/11(q, cu),

where II is the q- and cu-dependent polarizability [Fig.
1(b)]. The approximation (1) is rigorously valid in the

FIG. l. {a) Interquasiparticle interaction V,ff(q, m). (b) Po-
larizability 1I(q, ra).
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Kondo limit, but earlier numerical studies [15] have also
shown it to be reasonable in the practical parameter re-
gion for high-temperature superconductors, which are rel-
atively strongly correlated systems. In the limit m=0,
q 0, we retrieve from (I) the widely used approxima-
tion V,tr= [2p(sF)] ', where p(eF) is the DOS at the
Fermi level.

Suppose that we model the band structure for the
Cu02 plane, st„within a region lk„l & k„ lk~l & k,
around the VHS, with the rectangular hyperbolic form

q, =k„ky/m, (2)

where m is the eA'ective mass. Here the simplification of
rectangular asymptotes is irrelevant and can be removed

by rescaling the axes. Then the polarizability II(q, iv) at
T =0 for imaginary frequency i v is given by H
= (f/2D) IP(Z, q„/k, ) +P(Z, qz/k, )], where

P(Z, x) =g(I ) —g( —I ) —g(1/x)+g( —I/ )
—g(l —I/x) +g( —I + I/x), (3)
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FIG. 2. Interquasiparticle interaction V,a(q, iv) as a functipn
of imaginary frequency v, for various values of q in units of k,
(labels on curves), at fixed q» =0.05k, . f=0.5. Solid curves,
EF =0 [Eq. (3)]; dashed curves, sF =0.05D (obtained by carry-
ing out the zero Tk sum numerically). -

and g(u) =(Z+u) lnlZ+ul. In (3), D=k, /m and Z
=iv/cq. Equation (3) is based on the assumption of one
VHS occupying a fraction f of the area of the Brillouin
zone, and a spin degeneracy of 2.

The interaction V,a from (I) and (3) is illustrated in

Fig. 2. When the Fermi level lies right at the VHS this
function has extremely unusual behavior, in having a
cusplike q-dependent minimum as a function of imagi-
nary frequency. At small q the function changes by order
1 eV in tens of millivolts, abrupt behavior reminiscent of
the attraction induced by phonons. Of course the poten-
tial in the cusp region is not intrinsically attractive (Fig.
2), but it becomes so when the pseudopotential eff'ect,

arising from a node in the gap at higher energy, is includ-
ed: Such pairing by purely repulsive inte|actions has long

been known to be possible [16], but nonphononic exam-
ples have been lacking. When a displacement E of the
Fermi level away from the VHS is introduced the cusp
region, and hence the pairing tendency, tends to disap-
pear (Fig. 2).

For low frequencies the T=O potential V,~ can be
modeled to considerable accuracy, for small e, by the
form V,ir(q, iv) = Vn+ gl vl(D/le l) 'i . Our conclusions
are not sensitive to the detailed behavior of V,a at large
v, and since V,tr tends to saturate, we define a saturation
value V, in the high-frequency region. Hence, including
the electronic Z factor Z, (see below), a model for V,ff

over an extended frequency range is then

v, tr(q, tv) =v„ lvl) (E*la,l)'",
(4)

where the characteristic electronic energy scale E* is

given by

(s)

At T=O, V, = V, —Z, Vn/f, and from Fig. 2 the constants
( and Vn are (=0.86 and Vn=0. 16D. The behavior (4)
can also be obtained in the limit of weak interaction
(U((D), using the RPA, with U now entering instead of
Vc

Physically, the energy scale E* arises as the condition
when the dispersion relation of the interaction V„v
=fV, aqua /(Z, JD, intersects the dispersion relation v

=aq for the quasiparticles —a kind of velocity matching
condition. At this scale the quasiparticle can be thought
of as in resonance with the retarded interaction between
them.

To model the reduction in well depth V, due to Fermi-
level displacement E (Fig. 2) and also finite temperature
T, we adopt the interpolative form

V, = V —(V,/f ) [V(+ V" + V"[ 'i"

which exactly describes the separate E- and T-well depth
reductions if VE =D/ln(D/lEl) and VT =D/ln(D/0. 88T).

We now shall demonstrate how the interaction (4)
gives rise to pairing in which E* plays a role, analogous
to the phonon frequency in conventional superconductivi-
ty, as the characteristic energy scale for electronic pair-
ing. In the limit where E* is small, a Migdal-type
phase-space argument [I] will rigorously justify the treat-
ment of electronic and phononic pairing on the same foot-
ing. The essential principle may be manifested by ap-
proximating the k-dependent part of (4) by a square-well
interaction. To take account of phonons, we shall consid-
er the Einstein model, also modeling the kernel by the
square-well approximation [I], giving the linearized
strong-coupling gap equation
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E(k', v„)
a(k, v„) =Tg QK(k —k', v„—v„)

n' k' s12+ v„(k')' '

where the kernel takes the form

&(q, v. ) = —V, + V, &((E*lsql ) '"—
I v. I)

+ Vp0(roe I v„l) '

(6)

(7)

barred quantities involve implicit multiplication by the Z
factor Z(k, v„). In (7) v„=(2n+ I)rrT is the fermionic
Matsubara frequency, co~ is the Einstein frequency, and

Vz is the electron-phonon coupling. If there were only
the Coulomb and phonon terms in (7), it would be possi-
ble to momentum average and retrieve the Eliashberg
equation [1,7]. But, as we shall see, the q-dependent

term coming from the interaction of Fig. 2 leads to very
difI'erent physics.

Preliminary numerical studies of (6) and (7) suggest
two simplifying approximations —(a) ignoring the k
dependence of Z, and (b) using a separable model for the
kernel. The model is then

Z —I + rr, 8(E*—
i v„l )+op8(cop —

i vi),
&- —V, +V,61(«*I+I)'"—Iv. l)+(«*lakI)'" —lv. I)

+ V 9(roE —
i v„i)8(cog —

i v„ i) .

The rr, are estimated from Z = —dZ(k, ro)/dc@i =o at
T=O. Assuming E*))coE, the electronic Z factor is first
calculated by solving

Z, = I+ V fjln[D/(E+Z, E*)]+In[D/(JE+Z, (E*)' ) ]j/2D, k 0,
and then Z is calculated from

(8a)

Z=Z, +Vpfln[D/(at Z +E )'i ]/2D. (8b)

Fc+ rc

det F,
Fp

F, Fp

Fe fe Fep

F~

=0,

where 7, = I/V, and the functions F, are

F.=TQ g (IO)
k n 8 +v~

with f, = I, f =&((E*Ia~l) '"—Iv. I), fp =«roE —Iv. l).
and fep =f,fp.

Let us consider the qualitative physics in the absence of
electron-phonon coupling. Putting then Vz =0, we need
only consider the top left 2x 2 submatrix in (9). A rough
weak-coupling evaluation of F, gives

F, = dcp(e) jtanh(s/2T) —(2/rr) tan '[(c/E*) 'i ]]/2a,

Note the somewhat analogous appearance of E* in (8a)
in the role of energy scale played by roE in (8b).

Now the transition temperature is given by the solution
to

—.15 —.10 —.05 0 .05 .10 .15
I I I I I I I

100 -'

I

-' .5

80

—ivy) c /[s +(v /E*) ], then carry out the sl, in-

tegration first, giving expressions for the F's in terms of
adequately convergent frequency sums, which are readily
carried out numerically.

The results are illustrated in Fig. 3, where we have ad-
justed V, to give a T, of order 90 K. The electronic T, is
seen to have a pronounced maximum at E =0, both due
to the higher DOS in the neighborhood of the VHS and
due to the maximization of the electronic binding
strength at this point (Fig. 2). We then add a phonon
coupling Vp, corresponding to dimensionless coupling
strength at the Fermi level of X-0.2, a value consistent
with the mean free path [22]. With phononic pairing in-

cluded, a somewhat broader T, maximum is obtained; the
width is similar to that found in a recent quantitative

whence putting f=1 we obtain intuitive (but not accu-
rate) forms for T, and the effective coupling constant,

T, =1.36Dexpj —[2/X, 1r+In (D/E*) —I] ' ],
40

20

.2

v,—D'V—
I+ V, In (E /D)/4D

0 I I I I I

—.06 —.04 —.02 0. .02 .04
E D

I 0
.06

Equations (11) are identical with the standard results
[17-21] for pairing at a VHS in the BCS approximation
except that V, replaces the electron-phonon coupling and
E* plays the role of the phonon cutoN'.

For a more accurate evaluation we first replace the
artificial step-function cutoA's by more tractable smooth
ones, 0(roy —ivy) —rop/(v'+roy) and 0((E*iEi)'i'
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FIG. 3. T, for electronic interaction only (T,), and for elec-
tronic plus phononic interaction (T,p), and isotope shift e plot-
ted vs shift E of Fermi level from center of VHS. Top scale in-

dicates doping change 6'x relative to cF at VHS. In the absence
of electronic pairing T, peaks at 20 K with an isotope shift of
0.31 rising to 0.5 at large E Parameters: D =1.6 .eV, f=0 7, .

3 V I .3D Vp 0 2D cigp 004 eV (E =044D at
E =0).
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study of the specific heat jump in the 1:2:3material [23].
The isotope shift undergoes a strong variation from 0. 1 to
0.6 as E displaces the Fermi level away from the VHS, in

agreement with isotope-shift data on the 1:2:3 material
[9,10]. This contrasts with the much shallower dip in a
found in strong coupling from purely phononic pairing,
whether treated in the Eliashberg approach [7] or in the
present separable approximation (however, the BCS ap-
proach gave a strong variation in the isotope shift even
for phononic pairing [21]).

The value of E*=0.44D is deceptively large; E* is

merely an upper cutoff on a pairing spectrum. As a result
of peaking of the logarithmic DOS at low frequency, the
important pairing frequency is much below E . This is

seen quantitatively by examining the behavior of the F in-

tegrals, and indeed in the existence of pairing itself.
In the future we plan to examine the behavior of other

quantities, such as the gap and spin-lattice relaxation
time, for more specific experimental comparison with cu-
prate superconductors.

In summary, a strongly interacting 2D electron gas
with the Fermi level lying close to a VHS is found to have
an electronic contribution to pairing which can explain
the high T,'s found in the cuprate superconductors and
the trend of the isotope shift. The pairing mechanism is

associated with a characteristic low electronic energy
scale.

We are grateful to J. E. Demuth for a critical reading
of the manuscript.
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