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Zero-Temperature Hall Coefficient of an Insulator

24 AUcvsT 1992

Shou-Cheng Zhang
IBM Research DivisionA, lmaden Research Center, San Jose, California 95120-6099

Steven Kivelson

Department of Physics, University of California at Los Angeles, Los Angeles, California 90024

Dung-Hai Lee
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, Ne~ York 10598

(Received 20 April 1992)

We prove that for noninteracting electrons at zero temperature, an insulator exhibits finite Hall resis-
tivity in the dc limit. More generally, we present simple macroscopic arguments that this behavior is

generic for all insulators, %'e therefore conclude that the zero-temperature Hall coe5cient is not a mea-
sure of the number of mobile carriers.

PACS numbers: 73.50.Jt, 05.30.—d, 74.20.—z

An insulator is characterized by a vanishing conduc-
tivity tensor at zero temperature. For noninteracting
electrons, there are two realizations of such behavior —an
Anderson insulator and a band insulator. It is well estab-
lished that in any dimension (with or without external
magnetic field) sufhcient disorder renders a system insu-

lating. In particular, when enough disorder is introduced
to an otherwise free-electron gas, all occupied one-
particle states become localized, and the conductivity ten-
sor vanishes at zero temperature. In this state, there is no
electrical condition; however, the compressibility is, as in

a metal, finite. This compressible insulating state is
called an Anderson insulator. While disorder is essential
in producing an Anderson insulator, a band insulator can
arise from noninteracting electrons propagating in a per-
fect periodic potential. In this case when the number of
electrons per unit cell is even, an energy gap separates the
filled valence bands and the empty conduction bands.
This state, like an Anderson insulator, has no electrical
conduction at zero temperature. What distinguishes it
from an Anderson insulator is that it is also incompres. si-
ble.

While it is by definition true that Iim„oo„,(to)
=firn„ tio„y(to) =0, and lim„op„„(co)=De in an insu-

lating state, the value of lim Op,r(co) remains ambigu-
ous. For example, if o» and a ~ vanish in such a way
that the ratio „/tTo„r„stays finite, the Hall resistivity
computed from

p„=cr, /(a„' + cr2y)

would be finite. In a previous paper we dubbed this pecu-
liar insulating state a "Hall insulator" [1]. Experimen-
tally, Hall insulating behavior has been found in the
strong-magnetic-field limit in doped 3D semiconductors
[2] and 2D quantum Hall devices [3]. For example, in

Ref. [3], in a search for the v= —,
' quantum Hall liquid,

Goldman, Shayegan, and Tsui found that around v= —,
'

p„, diverges with decreasing temperature but p„, stays

tr „(to) =iK)co+K2co In'(1/co ), (2)

~here K] 2 are real, frequency-independent constants.
The exponent v is equal to D+ I (D is the dimensionality
of space) in the absence of a magnetic field [7], and is

equal to 1 in the D=2 strong-magnetic-field limit [g].
The first term in Eq. (2) is generally present for all insu-
lators. This follows from the fact that an insulator has a
nonzero electric polarizability in the low-frequency limit.

approximately B/nec This .behavior is in fact a prototype
result of any magnetotransport measurement on quantum
Hall devices.

Theoretically, based on the Chem-Simons-Ginzburg-
Landau theory of the quantum Hall effect [4], the
present authors suggested that the entire insulating phase
surrounding the quantum Hall liquids is a Hall insulator
[I]. One of the central points of this paper is that the
Hall insulating behavior is not a unique strong-field
phenomenon. The Hall resistivity in the weak-field and
weak-localization regime was first calculated by Fukuya-
ma [S]. In Ref. [5] it was shown that to leading order in

1/kFi the Hall coefficient RH cr,y/tr——„„is not affected by
localization. Recently, in an interesting paper, Wang et
ai. [6] performed a renormalization-group analysis and
claimed that localization does aA'ect RH such that the
latter diverges at the metal-insulator transition. This re-
sult was then regarded by the authors of Ref. [6] as sup-
port for the notion that RH is a measure of the density of
mobile carriers. Extrapolating this notion to the insulat-
ing side, one might then conclude that p ~ is infinite in an
Anderson insulator. Since the analyses in Ref. [6] are
performed on the metallic side, we feel that in order to
address the issue of the Hall insulating behavior a direct
investigation of the insulating regime is needed.

In the following, we study the zero-temperature fre-
quency-dependent conductivities T,„(|to) and cr„r (to) of
localized noninteracting electrons. For such systems it is
well known [7] that
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In fact, as will be discussed later, K~ is the real part of
the dc polarizability. The second term in Eq. (2) results
from quantum tunneling between two localized states
with an energy diff'erence -co. Given Eqs. (I) and (2)
we conclude that Hall insulating behavior occurs if

approximation. We find that the assumption concerning
the existence of Taylor expansion is generally invalid for
an Anderson insulator. In fact, we shall prove below that
for an Anderson insulator where the density of states at
the Fermi energy is finite, there is no region surrounding
the origin in the complex co plane in which a Taylor ex-
pansion is convergent. However, we will prove a weaker

f their result [Eq. (3)] for the Hall insulating be-
of noninteracting electrons in all dimensions.
start from the Kubo formula for 0,~, defined at the
bara frequencies i co„=i2zn/P (P = I/kz T),

lim [o„«( co)/ co] =a finite positive constant.
co~ 0

(3)

(4a)a„«(ico„)= [i (ico„)] rc„«(ico„),

In a recent paper [91, Viehweger and Efetov addressed
form o

the issue of the Hall resistivity in the high-field insulating
havior

We
state. In that work, after assuming the existence of a

Matsu
Taylor series expansion of cr,«(co) in co, the authors ar-
gued that the co' term vanishes by symmetry and calcu-
lated the coefficient of the co term in the one-instanton

where

e '(ico„) '
z„«(ico„)= J dr dr'xy' —g(G(r, r';iv„)G(r', r iv„+ico„))—(r r')

le
(4b)

In Eqs. (4) ( ) denotes the impurity configurational averaging, V is the total volume, z„« is the current-current corre-

lation function, and G(r, r';i v„) is the one-particle Green's function. In obtaining Eqs. (4) we have used the Heisenberg

equation of motion

r . 1 e=i [H, r] =—p
——A

t
'

m c

to express the matrix elements of the current operator in terms of those of the position operator. The physical conduc-

tivity is obtained by taking the thermodynamic (V ~) limit and analytically continuing the result from ico„ to co ib-
(where 8 is a positive infinitesimal). Here, we have assumed that rotational invariance is recovered after the

configuration averaging [i.e., cr„«(co) = —o«„(co)l, and this accounts for the term —(r r') in (4b).
In order to perform the analytic continuation, we express the sum over the Matsubara frequencies as a contour in-

tegral enclosing the poles of the Fermi function f(z) and deform the contour so that it encloses the poles or the branch

cut of the Green's function on the real axis. Thus we obtain

cr„«(ico„)= . . rc„«(ico„)=e (ico„)2n„«(ico„),
I Icog

where

(5a)

«F„«(ico„)= dr dr'xy' f(c) [(AG (r, r';c) G(r', r;c+ico„))+(G(r,r';c ico„)AG(r', r;c)—) —(r r')[
2@i

(Sb)

and AG(r, r';c) =G(r, r';c ib) —G(r, r';—c+ih) For an.
insulating phase with finite electric polarizability the
thermodynamic limit of (Sb) converges. We are then

ready to analytically continue n„«(ico„) to the real axis
from the lower half of the complex co plane. It is

straightforward to prove that x ~ has the following prop-
erties.

(i) From the analytic structure of G, one can show that

z„«(z) is analytic everywhere in the complex co plane ex-
cept a (possible) branch cut on the real axis.

(ii) The discontinuity of n «(z) across this branch cut,
Arc„«(co, 8) —=zc„«(co+i') —Fr„«(co —i&'), satisfies 'hzF «(co,
8) = —hn„«( —co, 6). This crucial property follows from
the rotational invariance, i.e., the term —(r r') in

(4b).
(iii) From (i) and (ii) it follows that lim oh+ «(co,

8) =0 for all 8&0. In view of the fact that Ax„«(z) is an-

alytic in the lower and upper half planes, we conclude
that lim, oem„«(z) =0 independent of the direction in

which the limit is taken except for along the real axis.
Therefore, the discontinuity of x„«(z) vanishes at z =0.
However, for an Anderson insulator, due to the branch
cut on the real axis there is no region surrounding z =0 in

which the z„«(z) is analytic. As a result, the assumption
of Viehweger and Efetov that there exists a Taylor expan-
sion about the origin is not valid.

(iv) Since G*(r,r';c+ih) =G(r', r;c i8'), Imzr„«(co-
—ib) =

z ihrc„«(co, 6). Therefore (iii) implies that

lim Imn, «(z) =0,
z 0

where the z 0 limit is taken in the same sense as
specified in (iii).
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(v) Because of (i), we can use Cauchy's theorem to

write

t: dz' tr», (z')
tr, (z =co —i8) =(t

& 2ni z' —z
(7)

lim Rett„~(co) =finite.
N~0

(9)

Combining Eqs. (Sa) and (9), we conclude that Eq. (3) is

proven.
To reiterate, the above proof is valid in all dimensions

and it is based on the assumptions that (i) the electrons
are noninteracting, (ii) impurity averaging recovers rota-
tional invariance, and (iii) the infinite volume limit of tr,~,

exists.
Although the proof presented above is limited to nonin-

teracting electrons, we shall now provide physical argu-
ments suggesting that the same conclusion can be drawn
for interacting systems. %e first recall the earlier discus-
sion that at zero temperature, an insulator has a nonzero
electric polarizability in the dc limit. Let us imagine ap-
plying an ac electric field E in the x direction and a dc
magnetic field 8 in the z direction. Because of the
Lorentz force law we may write the following equations
for the steady-state electric polarizations in a homogene-
ous isotropic insulator:

J(r, co) =P(r, co), P(r, co) = [a(co)/e]F(r, co),
(10)

F(r, co) =eE(co)+ J(r, co) x B,1

nc

where a(co) is the frequency-dependent polarizability,
and ne, an efrective charge density, is determined by the
total density of charges that contribute to the polarizabil-
ity. From Eq. (10) the conductivity tensor can be com-
puted and the result, in the low-frequency limit, is

a (co) =i coa(co),

cr, (co) = (B/nec) [coa(co) l 2,

which in turn gives p ~=B/nec Therefore we concl. ude
that the at zero temperature the Hall coefficient is not a

where C is any contour in the lower-half plane which en-
closes z.

(vi) From a general sum rule it follows that cr», A/iz
and therefore tr», A'/iz for large ~z~, where A and A'

are real, frequency-independent numbers. Therefore if
we choose C to be the contour along, and infinitesimally
below, the real axis closed by an infinite semicircle in the
lower half plane, we obtain the following dispersion rela-
tion forfar ~, :

Imtr, y (e)
Rett„~ (co) =—P de.

E " 6' —N

(vii) From Eq. (6) and the sum rule, it follows that the
integral in Eq. (8) is both infrared and ultraviolet conver-

gent; hence

measure of the density of mobile carriers
So far, we have been concentrating on the zero-

temperature co 0 Hall resistivity in a localized phase.
It is important to realize that the experimentally deter-
mined resistivities are typically obtained by first setting
co — 0 and then taking the T 0 limit. In the following
we shall provide examples where these two limits do not
commute. Therefore one must be extremely careful in

extending our zero-temperature results to finite tempera-
tures.

Let us consider a n-type-doped semiconductor. The
general arguments presented above imply that at T=O,
lim„op, J =a finite constant. At finite temperature,
however, the dc conductivities are dominated by the
thermally activated conduction. In the Drude approxi-
mation the dc conductivity tensor is given by

( )
n(T)e2r

XX I+ (co, r )

cr„„,(T) =co, ra„„(T),
where r is the transport lifetime, co, =eB/m *c is—a/kB T

the cyclotron frequency, and n(T) =npe ' is the
thermally activated conduction-band carrier density. As
a result, at finite temperatures p„, =B/n(T)ec measures
the density of mobile carriers. Transport experiments are
carried out at a finite temperature, and in most cases at a
finite but small observation frequency coo, in order to lock
into the signal. The analysis carried out above indicates
that the temperature-frequency plane can be divided into
two regions where diA'erent behavior for the Hall resis-

tivity is to be expected. For every coo, there is a crossover
temperature T*(cop), estimated from the relation

ml„cr, ( co,pT=0) =Reo„„(co=0,T*). For T much less

than T (cop), one should take the T 0 limit before tak-
ing the co 0 limit in calculating p„~, since the ac con-
ductivity is much greater than the dc conductivity. In

this limit, one obtains a Hall coefficient which is indepen-
dent of the mobile carriers. On the other hand, for T
much greater than T*(cop) one should take the co---0
limit before taking the T 0 limit in calculating p„„and
obtain in this case a Hall coefficient which is determined

by the density of mobile carriers. At mo =
1 H z,

Imcr, „=1.2X10 ' (e —I )/4tr (0 'cm '), whereas the
dc conductivity for a typical semiconductor, antimony-
doped germanium with a donor concentration of 5.3
X10' cm, is about 10 ' 0 'cm ' at T=3 K.
Therefore, below this temperature, the Hall coe%cient
would be essentially temperature independent.

It is a more subtle question whether the order of limits
commutes in an Anderson insulator. It is now commonly
accepted that for a localized phase where gp& i;„(where
gp is the localization length and i;„ is the inelastic scatter-
ing length), the effects of inelastic scattering can be sum-

marized by introducing an eAective finite size L,ff given

by the Thouless length [10]. In this regime, it is quite
plausible that by replacing co with I/rzh (where r~h, the
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phase breaking time, is given by rph =L,tt/D, where D is

the diA'usion constant) in the expressions for the zero
temperature ac transport coefficients, we obtain the cor-
responding dc quantities at ftnite temperature. If this is

true, the results we discussed above imply that Anderson
insulators at temperatures such that gp) l;„(T) are also
Ha11 insulators. In the deep insulating phase, however,
this is not true. In that case gp(l;„, and the low-

temperature transport on length scales greater than gp is

governed by classical variable-range hopping. The results
we discussed above are not directly applicable in this re-

gime.
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