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Numerical Solution of the d =~ Hubbard Model: Evidence for a Mott Transition
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We present a numerical solution of the infinite-dimensional Hubbard model at finite temperature in

the paramagnetic phase. The problem reduces to a single-impurity Anderson model supplemented by a

self-consistency condition. Using Monte Carlo methods and complete enumeration we determine the
imaginary-time Green's function, the density of doubly occupied sites, and the compressibility close to
half filling. All three quantities present direct evidence for a Mott insulating phase above a critical value
of U.

PACS numbers: 71.30.+h

Strongly correlated Fermi systems have been the sub-

ject of intense research in the last few years. Recently,
the limit of large dimensionality [1,2] has been shown

[3,4] to provide a natural mean-field picture of these sys-
tems. Exact mean-field equations have been established
for the one-particle Green s function in this limit [3,5,6],
which map a lattice problem in dimension d=~ (e.g. ,

the Hubbard model or the Kondo lattice) onto a single-
impurity model supplemented by a self-consistency condi-
tion [3]. This is still quite a difficult problem, however,
and no full solution has been found until now [6]. The
present paper discusses a numerical method to solve this
problem. We apply it to the paramagnetic phase of the
Hubbard model and present numerical results which pro-
vide direct evidence for a metal-insulator transition at
half filling.

Consider the Hubbard model,

&= —~ r;)c;~~ +H.c.+Urn;ln;1,
&ij )a I

in which the hopping t;~ is scaled in such a way that the
kinetic and interaction energies remain of the same order
of magnitude as d ee [7]. For a d-dimensional hyper-
cubic lattice with nearest-neighbor hopping, t;~ must be
scaled as t;~

= I/2Jd and the free (U=O) density of
states (DOS) D(e) acquires a Gaussian form in the
d ee limit [7]: D(c) =(I/Jz)exp( —E ). In this case
D(e) is unbounded, while for the Bethe lattice with con-
nectivity Z=2d ee and t;~

= I/JZ, the DOS takes a

semicircular form D(e) =8(2tet)v 1
—e /2z [I].

Mean field equ-ations One-p. a—rticle properties for the
d =~ Hubbard model can be obtained from the study of
an auxiliary impurity problem defined by the following

1

single-site action [3,5]:

rp lP ~P
S; p=UJ dznl(z)ni(z) J dz dz'gc (z)Gp '(z (2)

Here, Gp has to be determined self consistently -from the
requirement that the interacting Green's function
G(z —z') = —(Tc(z)c (z'))s, , of 5; ~ coincides with
the site-diagonal Green's function of the lattice problem.
This condition reads

G(iso„) =D(iro„+p —Gp(ico„) '+G(iro„) ') (3)

in which D is the Hilbert transform of D(e): D(z)
=I+dc D(c)/(z —e-) and the Matsubara frequencies
are given by co„=(2n+1)m/P. Gp and G are fully deter-
mined by the solution of the impurity model supplement-
ed by the constraint (3). The self-energy Z(i co„)
=Gp(ico„) ' —G(iro„) ' associated with the solution of
Eqs. (2), (3) coincides with the self-energy of the lattice
model, which becomes k independent in the d ~ limit
[I]. The one-particle Green's function of the lattice
model thus reads G(k, iro„) =[ico„+p—e~ —Z(ico„)]
These equations, which have the physical content of a
mean geld theory, are -valid in the paramagnetic phase of
the model, on which we wi11 concentrate exclusively in

this paper. Similar equations can be derived in phases

t with long-range magnetic order [2,6].
Equations (2),(3) are exact for the hypercubic and

Bethe lattice in the limit d ee only, in which case D(e)
takes the Gaussian and semicircular form, respectively.
They can, however, be considered as a mean-field descrip-
tion in more general instances, with an arbitrary DOS
D(e): This local approximation amounts to ignoring
momentum conservation in all skeleton diagrams for the
self-energy, while frequency conservation is retained.

Numerical method. —Our numerical solution of the
self-consistent problem consists in the iteration of two
steps: (1) The calculation of the imaginary-time Green's
function G(z) for a given Gp(z). This requires solving
the impurity problem (2), and is of course the most
difficult step of the procedure. (2) The calculation of an
updated function 60„,„from the above solution. This is

achieved by first Fourier transforming 60 and 6 and then
using the self'-consistent Eq. (3) in the form

Gp „,„(ico„)=Z(ico„)+ I/D(iro„+ p
—Z(iro„)),
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where Z(iro„) =Go(i ro„) ' —G(i~, )
This procedure is iterated at a fxed value of the chemi-

cal potential p until convergence is reached, starting from

an arbitrary 60.
S& p can be viewed [3] as the efl'ective dynamics

governing the impurity orbital c in the Anderson model

of a magnetic impurity hybridized with a conduction

band [8]. To solve it, we have used the algorithm of
Hirsch and Fye [9] for the Anderson model which works

directly with the imaginary-time Green s functions

Go(r ),G(r). The interval [O,P] is discretized in L slices

of size Ar (P=Lhz). A decoupling of the interaction

term in 5;~z is performed through L auxiliary Ising vari-

ables. For a given spin configuration, the trace over fer-

mions can then be taken. For large grids (L) 18) we

have used a single-spin flip Monte Carlo method to sam-

ple spin configurations, as in Ref. [9]. For L ~ 16, we

have been able to sum over all 2 spin configurations by a

single-spin Aip complete enumeration based on Gray's

code [10]: As evidenced below, this increases the accura-

cy dramatically.
Remarkably, this iterative algorithm is found to con-

verge rapidly to a solution (Go, G) of Eqs. (2),(3). Typi-
cal examples are displayed in Fig. 1, for which a conver-

gence up to 10 was obtained for L =16 in 4 iterations
—6

when using Gray's code [11].
Numerical results. —We concentrate in this paper on

the half-filled case (setting p =U/2) and study the

paramagnetic solution as a function of temperature and

U. Of course, on a bipartite lattice and at very low tem-

perature T ( TN«1, the solution with lowest free energy is

antiferromagnetic. In this paper, however, we are only

0.5

interested in describing the interplay between Fermi-
liquid behavior and localization within the paramagnetic
solution, as is, e.g. , commonly done in the theoretical
descriptions of He [12]. We have investigated both a
Gaussian DOS and square DOS D(e) = —,

' for —
1 (e( 1 without finding qualitative differences in the results

of our simulations (cf. however [13]).
One of the simplest indicators of the degree of correla-

tions is the fraction of doubly occupied sites (D) =(ntnl).
A plot of (D) as a function of temperature for various
values of U is given in Fig. 2 for the square DOS (the re-
sults for the Gaussian DOS are qualitatively very simi-
lar). At very high temperature (T)& U), (D) approaches
the atomic value (D),i=1/[2+2exp(U/2T)l. The data
display a characteristic low-temperature behavior: For U
not too large, (D) initially decreases with temperature,
reaches a minimum, and increases again. This feature is
characteristic of incipient localization effects in a strongly
correlated Fermi liquid in a regime dominated by spin
fluctuations [14]. Starting from the low-temperature
Fermi-liquid regime with an entropy yT per particle, the
system can gain free energy upon heating by increasingly
localizing the particles (i.e., decreasing (D)) in order to
take advantage of a larger spin entropy (which would be
of order ln2 in a solid phase) [15]. The inset of Fig. 2
shows the temperature T at which this minimum is
found as a function of U. Above U=U, =3 (U, =3.7 for
the Gaussian DOS), we have been unable to locate a
minimum of (D) vs T above T= —,', . We interpret this as
the signature of a localized Mott phase for U )U, =3 at
T =0. Indeed, a localized phase has a finite spin entropy
already at T=O and cannot gain free energy by decreas-
ing (D) upon heating.

In order to confirm the existence of a Mott transition
we have performed simulations away from half filling to
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FIG. I. Green's functions G(r ) and G0(r) [defined by
Go(iro„) ' =Go(i'„) ' —U/21 at half filling and ii=4 for
U=3 (itinerant phase) and U=7 (localized phase), obtained by
Monte Carlo simulations for I =32 and by exact enumeration
for L =16 (square DOS).
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FIG. 2. Density of doubly occupied sites vs temperature at
half filling for various values of U (square DOS). Very similar
results are obtained for the Gaussian DOS. Inset: Tempera-
ture at which (D) is minimum vs U.
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obtain the chemical potential p as a function of density n,
and we compute the compressibility tc = t)n/tip. The
latter requires an extremely good accuracy on p vs n: Ex-
act enumeration is the key point here. Figure 3 displays
plots of p=p —U/2 versus density at p=1/T=4. For
U =3 and U =7, we display the three curves obtained for
I =4, 8, 12 (Ar =1,0.5,0.33). All these data are obtained
at constant p and a relative precision of 10 is reached
on the computed density. These curves clearly extrapo-
late (as L ~) to p =0 for U=3, and apparently to a

nonzero value of p=1.7 for U=7. We consider this as
the signature of the Mott phase, with a discontinuity of p
vs n at T =0. Indeed T =1/P =0.25 is small compared to
the Mott gap that we find at U=7, and our simulation
cannot really exclude that the discontinuity is not actua1-

ly smoothed out by an exponentially small amount
exp( —

phM0$$). This change of regime at finite T can be
very abrupt, as evidenced by the inset of Fig. 3, display-
ing the inverse compressibility x '. We estimate
U*(P = I/T=4) =4.7, U*(P =1/T =2) =7.5.

The localized phase is also directly apparent on the
Green's functions Gp(r ),G(r ) themselves. These are
displayed in Fig. 1 at P=4 for U=3 and U=7. It is

striking that the decay of G(r) with r is much more rap-
id in the localized phase. Indeed extrapolation to large p
in the Fermi-liquid phase reveals a decay as 1/r for large

0,
0.5

FIG. 3. Shifted chemical potential vs density at P=4 for
V=3 and U=7 and for three values of L =4,8, 12, as obtained

by exact enumeration for the square DOS. The dashed line is a

linear extrapolation to I/1. =0. Inset: Inverse compressibility
' vs U.
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i, as expected, and an exponential decay in the localized
phase, as expected when the spectral density has a gap at
T =0.

Disc-ussion. —Using three diAerent and largely in-

dependent quantities, we have found consistent evidence
for a localized regime, for large enough U (U, =3 for the
square DOS, =3.7 for the Gaussian DOS). In the itin-
erant phase for U ~ U, we have noticed an increasing
tendency to localize below a temperature scale T„, (that
we associate with spin fluctuations), and a second temper-
ature scale (=U) associated with the crossover to the
atomic regime. Above U, the first temperature scale
disappears.

It is instructive to compare these findings to the
Gutzwiller approximation (GA) scheme on which most
theoretical descriptions of the Mott transition have relied
up to now [14,16]. The T=O phase diagram is in quali-
tative agreement with this approximation, which yields
U, =4 for the square DOS and U, =8/Jr=4. 5 for
the Gaussian DOS. Of course, in contrast to the GA, (D1
is nonzero at T=O even in the localized phase and cannot
serve as an order parameter. This is because the GA
misses completely the higher energy scale associated with
charge fluctuations.

At finite temperatures, however, we find a phase dia-
gram markedly diA'erent from the results of various at-
tempts to extend the GA to T) 0 [14,17]. A localized
phase is not entered upon heating for U ~ U, even though
an increasing degree of correlation is observed below T
(Fig. 2). Rather, we find that U*(T) increases rapidly
with T. In our opinion the first-order Mott transition at
T&0 for U ~ U, found within GA schemes is to be inter-
preted as the crossover associated with T, (cf. inset ol'

Fig. 2).
Finally, we show how the transition to a Mott phase for

U) U, (i.e. , the breakdown of Fermi-liquid behavior)
can be understood theoretically at T=O. Let us repre-
sent the T =0 local Green's function by its spectral densi-

ty p(co) = —(I/tr) imG(co+iO+). In the picture of Ref.
[3], p(co) has a three-peak structure in the Fermi-liquid
regime: a narrow quasiparticle resonance at m=0, of
width Z=Tg, and two satellite peaks corresponding to
the upper and lower Hubbard bands. The impurity mod-
el (2) is in a local-moment regime at half filling, associat-
ed with the low-energy scale Tr, (Kondo temperature)
below which spin fluctuations are quenched. Clearly, the
Mott phase must correspond to a suppression oI the Kon
do effect in the impurity modelso that th, e Kondo reso-
nance (quasiparticle peak) disappears and the T=0 spec-
tral density develops a gap (or a pseudogap, see [13]) at
zero frequency.

We now imagine solving the impurity model iteratively
as in our algorithm, starting from an arbitrary Go. A
convenient parametrization of the latter at half filling is

Go(ito„) ' —U/2=its„—h(ico„), in which 6 is the Hil-
bert transform of an even function A(to). In the Ander-
son model framework [cf. Eq. (2)1, A(co) is essentially
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the density of states of the conduction band. We will

show that for large enough U, A(tu) itself must eventually
develop a gap [13]. The Kondo effect no longer takes
place in that case since no hybridization with conduction
electrons at the Fermi level is possible in the impurity
model (the flow is towards weak Kondo coupling). At

any given step of the iteration, we can characterize the
low-frequency behavior of A(cu) by its width Wn and its

value at zero energy, h(0). In the first part of the itera-
tion, the impurity model must be solved for G. Decom-
posing p(co) into a coherent part p„h (the Kondo quasi-
particle resonance) and an incoherent part p;„„and
neglecting the latter together with all lifetime effects, we

can approximate p at low frequencies by D(to/Ttc) where
D is the free DOS. Ttc is a nonuniversal quantity, but ba-
sically depends on U, h(0), and Wn only. The self-
consistency condition is then used to provide a new Gn

(i.e., a new 5) from p. Within the above approximation,
one finds that h(0) is invariant under iteration [and equal
to I/tr D(0)], and the new width Wn„,„ is of order

Ttr(Wn, U) [18]. Hence for large U, Wo is decreased
upon iteration, and one quickly reaches a regime in which

Wn is smaller than other energy scales (i.e., U and

p=U/2). Using the relevant expression for Ttr(Wn, U)
in this regime [19], one gets a recursion relation for
the width, valid when U is very large: Wti"+ '

=Wtw"1[UD(0)l ' exp[ —tr UD(0)/4]. Hence, for
large U, Wn (and Z=Tx) must converge to zero, which

shows that the Fermi-liquid fixed point is unstable.
Wc=0 signals the opening of a gap [13] in both h(cu)
and p(ca).

Even though it has been obtained under rough approxi-
mations and for large U, this recursion relation does have

an unstable fixed point at a finite value of U. It lacks,
however, the nonlinear terms which are crucial to allow a
description of the transition (they would be induced by
incoherent and lifetime effects).

In conclusion, we have demonstrated the possibility of
solving the d =~ mean-field equations for strongly corre-
lated systems with moderate computational effort. We
expect this approach to significantly increase our under-

standing of these systems in the near future.
We are indebted to J. P. Bouchaud, P. Coleman, V.

Hakim, and P. Nozieres for useful discussions. A.G.
would like to thank G. Kotliar for an earlier collaboration
on d =~ strongly correlated systems and for numerous
discussions. After completion of this work we received a
preprint by M. Jarrell in which an equivalent algorithm is

used, mainly to study the transition into the antiferro-
magnetic state. He finds that TN„~(U) is always smaller
than TN«~(U= 3)=0.14. Laboratoire de Physique
Theorique is unite propre du CNRS (UP 701) associee a

1'ENS et a 1'Universite Paris-Sud. Laboratoire de Phy-
sique Statistique is laboratoire associe au CNRS (URA
1306) et aux Universites Paris VI et Paris VII.

Note added. —We have also learned of work similar to
ours by Rozenberg, Zhang, and Kotliar [20].
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