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%'e present a solution of the Hubbard model at half filling in the limit of infinite dimensions which

corresponds to the Mott-Hubbard insulating phase. We describe the metal-insulator transition between

this regime and the Fermi-liquid regime. Our analysis is based on an analytic consideration and exact
Monte Carlo simulations at low but finite temperatures.

PACS numbers: 71.30.+h

= I/[iro„—«Ir
—Z(i pi„)], so that GL(irp„) =gir II/[irp„

—
«ir Z(i—rp„)]]. To solve the model we have to compute

the Weiss field Gp(irp„) from the self-consistency-con-
dition equation

Strongly correlated Fermi systems in infinite dimen-
sions were introduced by Metzner and Vollhardt [I].
They have received intensive recent attention because
they are simple enough that they are amenable to exact
treatment and at the same time retain some of the essen-
tial features of finite-dimensional models [2]. In this pa-
per we will focus on the Hubbard model:

p(«)d«
[irp„—« —Z(Gp, i«p„)]

'

(3)
where p(Gp, irp„) —=Gp

' —(CtC)slo, l is the self-energy of
the impurity model (2). After solving for Gp, the self-

energy of the Hubbard model is obtained by evaluating Z

at the self-consistent 6Q.
The only place where the precise nature of the lattice

enters the mean-field equations is in the density of states
p(«)—:glrB(« —«ir). We view p(«) as a parameter in the

mean-field equations. The hypercubic lattice in infinite

dimensions gives a Gaussian density of states [6]. We use

a bounded density of states, which captures essential
features of the band structures in finite dimensions. At
half filling the model is particle-hole symmetric and it is

convenient to define quantities which are odd functions of
Matsubara frequency: Gp

' =Gp ' —
—,
' U and Z(Gp)

=Z(Gp) —i U.
In Ref. [3] Georges and Kotliar analyzed the qualita-

tive behavior of the solutions of (2) under the assumption

that Gp is finite at zero frequency and ImGp(irp„=Q
+i6)&0, which they showed implies Fermi-liquid behav-

ior. Here we would like to point out that the system of

Eqs. (2), (3) can have a diA'erent class of solutions which

describe a Mott-Hubbard insulator. They are character-
ized by a GQ which diverges at zero Matsubara frequen-

cy. This behavior is very natural if we think in terms of
the mapping onto the Anderson model proposed in Ref.
[3]. In that picture the original electron is split into a lo-

cal degree of freedom which captures the localized aspect
and a conduction band which reflects the itinerant aspect
of the strong-correlation problem. The local degree of
freedom hybridizes with the conduction band. O'Q is

parametrized by the hybridization function A(«) of
the Anderson model [3], Gp

' =i«p„+ (p —
—, U)

' Jh(«)d«/(i«o„— «). The Fermi-liquid regime has

A(0)~0 which binds the conduction electrons and the lo-

cal moment to form quasiparticles. The insulating behav-

ior that we find at half filling, p =
=,
'

U, corresponds to a

hybridization function which vanishes as we approach

S[Gp] = —„i „C"Gp 'C dr dr'

+UJ CiCiCiCidr .
r P

GL is related to the Green's function of the Hubbard
model in infinite dimension via —(C~(i«p„)C~(iso„))
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—g;~t;, e'" ' ~ —
iu =«i, is the unperturbed one-particle

energy and p is the chemical potential which at half
filling equals & U.

In a previous publication Georges and Kotliar [3] con-
structed a mean-field theory of the Hubbard model which
becomes exact in the limit of infinite dimensionality In-.
dependently Janis and Vollhardt [4] arrived at the same
mean-field equations using a very different approach.
Georges and Kotliar also analyzed qualitatively a class of
solutions of these equations which describe the Fermi-
liquid regime of this model using a mapping onto the
single-impurity Anderson model. These ideas have been
extended to other strongly correlated electron systems
Is].

In this paper we introduce a different class of solutions
which describe a Mott insulating phase. %e then discuss
how the transition between the Fermi-liquid and the Mott
insulating phase takes place within the mean-field theory.
%e will show that one can obtain substantial analytic in-

sights from the mean-field equations. In addition we

have obtained an exact, numerical solution of these equa-
tions, which we use to check our considerations.

A basic observation in Ref. [3] is that for the purpose
of calculating local quantities the information about all
intersite processes is contained in a single function of fre-
quency, Gp(iru„), which plays the role of the Weiss field
in conventional mean-field theories. Given the Weiss
field, the local Green's function Gi (i«p„) = —(C (i«u„)
&& C (iso„))sio,i is calculated from the single-site action
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zero energy, i.e., h(0) =0.
When the hybridization function vanishes at zero fre-

quency the Kondo model obtained from the Anderson
model by eliminating the charge degree of freedom scales
to weak coupling as shown by Whittoff and Fradkin [7].
We then have a realization of the paramagnetic insulat-
ing solution; the charge degrees of freedom are frozen
while the spin degrees of freedom are free to fluctuate.

To exhibit our new type of solution analytically we take
a semicircular density of states p(e) = (2//xD ) (D
—e ) 'i . We work in the limit U)) D, and start with the
assumption (which we will show is self-consistent) that

Gp '(imp„)-icp„ that is A(icp„) 0 as imp„0. Substi-
tuting this into (2), one finds that the action becomes al-

most local (in imaginary time) at low energies, or in the

language of the Anderson model, it reaches the atomic
limit. The local Green's function and Z(Gp, imp„) are then

evaluated by taking an average of the two magnetic
Hartree-Fock (HF) solutions,

G (. )
1/2 1/2 (4)

Gp '(iro„) —U Gp '(iro„)

which gives Z=(& U) Gp(ico„).
Once more we emphasize that while the magnetic HF

solution of the Anderson model is invalid when A(0)&0,
the results of Ref. [7] imply that the magnetic Hartree-
Fock solution is qualitatively correct for large U, since
h(0) =0, and in this case the Kondo coupling renormal-
izes to zero at low energies.

Now we show that the ansatz h(iro„) 0 as iro„0
is indeed self-consistent. The Hilbert transform of the
semicircular density of states, fp(e)de/(z —~), is given

by 2/[z+(z —D )'i ] and the self-consistency equation
becomes

[Gp
' —&(Gp))

irp„—Z(Gp)+isgn(rp„) [D + [cp„+iZ(Gp)] ] '

which leads to

4gp —U gpx —4gp 'x+(U D) =0, —

where for convenience, we define x =m„and GD= —ig0, Z= —io. so that g0 and a are positive when m„&0. This is a

cubic equation in go- which can be solved in closed form. Only one of the three roots corresponds to the physical solu

tion. For small frequencies, the solution has a simple form gp
' =U x/(U D) (which r—equires U & D) f« large fre-

quencies gp =x. When U))D, which is the region where the expansion around the atomic limit is valid, it is possible

to approximate the solution of the equation (analytically continued to real frequencies) as

4 2 U2 [(4 2 U2) 2 4(4 2+U2)D2) 1/2

Gp =N —M
2(4ro +U )

(7)

The spectral function consists of two features centered
around rp = ~ U/2 with width 2D, arising from the finite

imaginary part of the square root. The hybridization
function can be estimated, h(irp„) =Gp '(irp„) —irp„
=i'„D /(U D), as rp„0. —

Thus we have shown that G irp, Gp (irp) ', and
(irp) in the low-frequency limit is a solution of the

infinite-dimensional Hubbard model. This solution de-
scribes a Mott-Hubbard insulator characterized by a
divergent self-energy and a gap in the single-particle
spectrum of order U —2D.

A crucial question is how one goes from the Fermi-
liquid solutions characterized by Fermi-liquid low-

frequency behavior, Z(ico„)——ie„, to the Mott-Hub-
bard insulator regime described in this paper. To answer
this question, we go back to the metallic solution and
gradually increase the interaction U. As described in

Ref. [5], the Fermi-liquid regime at half filling corre-
sponds to the formation of the Abrikosov-Suhl Kondo
resonance in the Anderson model. Equation (3) consti-
tutes a functional equation for the Weiss field Gp '(irp„)
which cannot be solved analytically (we will turn to its
numerical solution below). To gain insight into the
mechanism that destroys the Fermi-liquid resonance peak
one would like to project the functional equation on a

small space of "relevant variable's. "
Since A(0) is unrenormalized in the Fermi-liquid re-

gime, we focus on a variable W, which describes the re-
gion over which the effective hybridization is nonzero at
low energies. In the Anderson-model analogy it is the
effective bandwidth of the conduction electrons. We en-
vision an approximate parametrization of the exact solu-
tion of the system, at low frequencies, of the form
Gp

' = —i sgn(ro„)D/2+O(irp„) for ~rp„~ (8; and Gp
'

= i rp„ for ) rp„~ & W. Imagine solving the system (2)- (5)
by iteration. At the nth step we have some finite value of
8'=8' ", and obtain from the impurity model a self-
energy X=[1—I/Z(Gp)]co+0(rp ). For a large U/D, Z
is just the inverse of the Kondo temperature,
Z(Gp) =4(W' " /D) exp( —xU/4D). The next step in the
iteration, is to solve Eq. (5), which gives, W "+'
=48' " exp( —zU/4D).

It is clear that for large U the effective bandwidth
iterates to zero, reaching the insulating regime. For
small UlD, solving the impurity model gives a Z of order
unity. The iteration step then gives W=D. This is the
Fermi-liquid regime. Separating these two regimes is the
critical U, ~ In this scenario the Mott transition is driven

by the shrinking of the dynamical range of the Fermi-
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FIG. 1. The imaginary part of the Weiss field Go
' as a func-

tion of Matsubara frequency for U=2 (solid line), U=3 (dot-
ted line), and U =3.6 (dashed line), at P =64. All energy scales
are renormalized by the half bandwidth 0 =1. For U & U, the
Weiss field approaches its unrenormalized zero-frequency value
D/2 For U) U. , it matches the analytical solution of Eq.
(6) in the text, Im(Gp ' ) = —co„, co„oo, and Im(Gp ' )
= —U ro, /(U —D ), ro, 0.

liquid regime, the height of the quasiparticle peak
remains unrenormalized. Related ideas have been put
forward by Khurana [8].

To confirm these qualitative arguments, we solve Eqs.
(2),(3) numerically using quantum Monte Carlo simula-
tions. The procedure to compute Z(Go) is based on the
algorithm of Hirsch and Fye and of Gubernatis, Hirsch,
and Scalapino [9] who studied the single-impurity Ander-
son model. The functional equation is solved using an
iterative procedure. The technical details of the simula-
tions will be discussed elsewhere. The Mott-Hubbard
transition with the semicircular density of states is found
at U=3. 1 for D =1 (all energy scales are renormalized
by D), which is slightly lower than the result obtained
from the Gutzwiller approximation, where U, is calculat-
ed to be 32D/3x [10,11]. In Fig. 1 we show plots of
(ImG0) ' vs ro„ for U=2, U=3, and U=3.6. Figure 2
shows the self-energy for the same values of the interac-
tion. Below U, we distinguish two Fermi-liquid subre-
gimes characterized by small and large slopes of the self-
energies, respectively. The plot for U =2 is characteristic
of the weakly correlated Fermi-liquid regime where the
Weiss field Go

' decreases monotonically with frequency.
The plot for U=3.0 is representative of the strongly
correlated Fermi-liquid regime characterized by a small
dip in Go ', making it to increase towards its zero-
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FIG. 2. The self-energy Z as a function of Matsubara fre-
quency for U=2 (solid line), U=3 (dotted line), and U=3.6
(dashed line), at P =64. For U & U, the self-energy is linear at
low frequencies with a slope increasing with U. The noise of the
plot at U =3 is due to the proximity to the critical U.

frequency value & D as we reduce the frequency. The be-

havior for U & U, is completely consistent with our ana-
lytic arguments. The numerical results are obtained at
an inverse temperature p =64. The agreement of the nu-

merical data with our analytic arguments gives us

confidence that no new features will appear as we take
the p ~ limit. To further confirm the opening of a

gap, we also measured the discontinuity in the chemical
potential versus occupation number as shown in Fig. 3.
At finite temperatures the metal-insulator transition we

obtained becomes a crossover. However, this crossover is

quite sharp. For example, at finite temperatures for
U& U, the p vs n curve should be continuous because
there is always activation from the lower to the upper
Hubbard band. Nevertheless the curves in Fig. 3 ob-

tained at finite temperatures are nearly discontinuous be-

cause the temperature is much smaller than the Mott-
Hubbard gap.

We also measured the local spin-spin autocorrelation
function of the Hubbard model, in imaginary time. It is

given by the spin-spin correlator of the impurity model.
Our measurements are consistent with the following be-
havior: On the insulating side of the transition there is

long-range order in imaginary time lim, (m(r )m(0))
=m & 0 for U & U, and it decays to zero on the metallic
side. m =0 for U & U, .

In this Letter we have focused on the paramagnetic
one-particle Green's function of lattice models in infinite
dimensions with a bounded density of states. We also
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studied the unbounded Gaussian density of states. In this
case the numerical results for Go and the self-energy are
very similar to that of unbounded ones. However, analyt-
ically can be seen that there is a qualitative difference in

the spectral function of the local Green's function G: In
the unbounded case, above U, the one-particle spectral
function has a pseudogap at the Fermi level. The rate at
which the density of states decays at zero energy is sim-

ply related to the decay of the Hilbert transform of the
density of states at infinity. ImG(ro)-p(ro —I/co), co

~0
In this Letter we concentrated on the paramagnetic

solution in order to bring out the physics of the charge
degrees of freedom. The physics of this phase depends
only on the density of states. Miiller-Hartmann [61 has
shown that in infinite dimensions several lattice disper-
sions (some which correspond to non-nested lattices)
share the same density of states. The nature of the mag-
netic order and the magnetic transition temperature re-
quires one to specify more information on the form of the
dispersion than just the density of states. Nonfrustrated
lattices have antiferromagnetic transition temperatures
which are exponentially small for small U, and of order
t /U for large U, with a maximum transition temperature
at U of order t. Frustrated lattices can have much lower
transition temperatures. The semicircular density of
states used in our calculations can be realized in a Cayley
tree with infinite coordination number [12]. This lattice
is not frustrated and is bipartite. As a result, at zero tem-
perature it has antiferromagnetic long-range order for an
arbitrary value of U. The semicircular density of states is
also realized in a lattice where every site is connected to
every other site and the hopping matrix elements are in-
dependent Gaussian random variables suitably scaled as
the inverse square root of the number of lattice sites to
have a good thermodynamic limit. %'hile this model has

-I 6 I 2

0 —U/2
FIG. 3. The particle occupation as a function of the chemical

potential p
——,

' U for U=2.2, 3, 4, and 6 (top to bottom as on

right-hand side), at P =4.

randomness, the one-particle Green's function is nonran-
dom, i.e. , it is self-averaging. This model is very frustrat-
ed and it does not order magnetically.

To summarize, we have found a new regime for the
infinite-dimensional Hubbard model at half filling. We
showed that the large-U narrow quasiparticle feature [3]
disappears above a critical value of U. This is due to a
divergence in the inverse of the self-consistent Weiss field

60, which allows our d =~ model to map onto an Ander-
son model with vanishing effective hybridization at the
Fermi level [h(0) =0]. The Kondo model obtained from
the Anderson model via the Schrieffer-Wolff transforma-
tion then flows to zero coupling at low energies. In this
case the self-energy Z has a pole singularity at zero fre-
quency which reflects the opening of a Mott-Hubbard
gap in the one-particle spectrum. Our solution for the
case of very large U is essentially the same as that in

Hubbard III [13]. What has been accomplished in this

paper is (1) to show how Hubbard-like physics emerge in

the limit of large d and large U, (2) to obtain a true
Fermi-liquid solution on the metallic side of the transi-
tion, and (3) to show how a transition between the two
regimes takes place as we change the value of U.

Upon the completion of this work, we have received a
preprint from Mark quarrel who has used a similar numer-
ical procedure. We also learned that similar work was
performed by A. Georges and W. Krauth. We would like
to thank C. Castellani, J. Ferrer, F. Gebhard, and Q. Si
for useful discussions. This work was supported by the
NSF under Grant No. DMR 89-15895. The bulk of the
numerical calculations were performed using a Cray-
YMP at University of Illinois, Urbana-Champaign super-
computer center.
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