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Randomness-Induced Second-Order Transition in the Two-Dimensional Eight-State Potts Model:
A Monte Carlo Study
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We have studied the effect of quenched, bond randomness on the nature of the phase transition in the
two-dimensional eight-state Potts model. Through extensive Monte Carlo simulations, we confirm that
the phase transition changes from first order to second order. A finite-size-scaling analysis of several
therrnodynarnic quantities strongly suggests that the critical exponents fall into the universality class of
the two-dimensional Ising model.
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The addition of quenched randomness to many models
which exhibit second-order transitions is known to have
dramatic effects on the nature of the critical behavior
[1,2]. Very recently it was also suggested, on the basis of
phenomenological renormalization-group arguments [3],
that the addition of randomness to systems undergoing
first-order transitions should alter the nature of the be-
havior and instead produce a second-order transition.
This work, together with a more rigorous treatment of the
latent heat [4], suggested that the two-dimensional q-
state Potts model with q &4 might be a suitable candi-
date for testing this prediction.

The nature of the phase transition in the two-
dimensional q-state Potts model [5] has been known for
some time. The transition is of first order for q & 4, and
is continuous for q ~4 [6]. The value of the transition
temperature is known for all q as are the critical ex-
ponents for q ~4. For the Potts model with quenched
randomness, however, no quantitative results exist. In
this Letter we present a detailed Monte Carlo study of a
random-bond Potts model, verifying the above hypotheses
[3,41 concerning the order of the transition as well as
presenting the first estimates of the critical exponents.

The Hamiltonian of a q-state Potts model with
quenched random interactions can be written as

where the spin o can take on the values 1, . . . , q, 6 is the
Kronecker delta function, and the sum goes over all
nearest-neighbor pairs in the system. The couplings K;~
are selected from two positive (ferromagnetic) values Kt
and K2 with a strong to weak coupling ratio K2/Kt =2.
We have studied this model on the square lattice, choos-
ing the couplings so that there are the same number of
strong and weak bonds in each of the two lattice direc-
tions. This model is a restricted version of a random-
bond Potts model discussed by Wu [5] which has two fer-
romagnetic couplings chosen randomly from the distribu-
tion

P(K) =p8(K —Ki)+(I —p)8(K —Kp) .

For p =0.5, and K2/K~ =2, the value of Kt at the transi-

tion can be determined by the expression [7]

[exp(K ~ ) —1][exp(2K1) —1] =q

which yields EC~ =0.92018527. . . . Although our model
is a restricted version of this random-bond Potts model,
we expect that the behavior of our model will be similar
in the thermodynamic limit.

We performed extensive simulations of L XL lattices
(12 ~ L & 128) with periodic boundary conditions using
a "multihit" Swendsen-Wang cluster flipping method [8].
(The multihit algorithm uses multiple decorations of the
Swendsen-Wang clusters to increase the speed of the
simulation. ) Histogram techniques [9,10] were used to
determine the behavior of several thermodynamic quanti-
ties over a range of K~. Between 6x10 and 1.5&10
Monte Carlo steps (complete lattice updates) were per-
formed using a cluster of IBM RS/6000 model 550
workstations at the University of Georgia. For the larg-
est system, the run length was more than 10 times the
correlation time. Up to 40 difl'erent bond distributions
were used in the configurational average over randomness
for bulk properties.

The first part of our analysis was to determine the or-
der of the phase transition. This has traditionally been
difficult for systems with weak first-order transitions, but
finite-size effects at first-order transitions [11] are now
much better understood and different techniques for dis-
tinguishing first-order from second-order transitions have
recently been developed. One of these approaches is due
to Lee and Kosterlitz [121 who suggest that the size
dependence of the free energy as a function of energy,
FL(E) = —lnPL(E), where PL(E) is the probability dis-
tribution for a system of linear dimension L, can be used
to determine the order of the transition even if the system
size is smaller than the correlation length. Their tech-
nique makes use of the fact that for large systems the free
energy at a first-order phase transition will consist of two
minima of equal depth separated by a peak. (The proba-
bility distribution will therefore have two maxima
separated by a minimum. ) If the free-energy barrier
(difference between the minima and the peak) grows with
increasing system size, the transition will be first order in
the thermodynamic limit while if the barrier decreases
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with increasing system size, i.e., the free energy tends to a
single minimum, the transition will be second order. We
have used a variation of this approach to determine the
order of the transition in our model; the variation is

necessary because of the configurational average over
randomness. We have determined the average value of
the free-energy barrier by first calculating it for a given
bond configuration then performing the configurational
average over bond distributions. The resultant free-
energy barrier /1.F(L) is plotted as a function of inverse
lattice size in Fig. 1. Clearly the trend for large L is to-
ward zero free-energy barrier which indicates that the
transition has indeed changed from first to second order.
For the uniform eight-state Potts model, the free-energy
barrier is significantly larger [/) F(L =16)= 1.0] and
grows with increasing system size [12]. Note that for
smaller L the trend toward AF =0 is not as clear, indicat-
ing that these systems are not yet in the asymptotic re-
gime.

A more traditional approach to determining the nature
of the transition is to use finite-size-scaling (FSS) tech-
niques [13] to extract the infinite-system behavior from
finite-lattice data. When used in conjunction with histo-

gram techniques, FSS becomes even more powerful and
can provide high-resolution estimates for the critical be-
havior. Usually one looks at the scaling properties of the
specific heat

K
C = ((E') —(E)')

L 2

(E is the total energy of the system) or magnetic suscep-
tibility to determine critical exponent ratios. For exam-
ple, for suSciently large systems, the maximum in the
specific heat scales with system size like

Cma~ ~ L' '.
(For a first-order transition, the specific heat diverges as
L so a measurement of the scaling behavior of C,„will
also provide additional confirmation of the order of the
transition. ) Finite-lattice transition couplings such as the
location of the specific-heat maximum K~ (L) vary with

system size like

K (L) =Kc+aL

If the system sizes are not large enough, correction terms
must be included in the above expressions. Of course, the
order parameter

M=L max(M), Mq, . . . , M~),
where Af; is the number of spins in state i, can be treated
in a similar fashion. It has recently been shown that oth-
er, less traditional, quantities can be used eA'ectively in
finite-size-scaling analyses [141. For example, the loga-
rithmic derivative of any power of the order parameter,

ri ln(M") (M"E)

scales with system size like L ' ' as does the derivative of
the Binder parameter t)) Va/8K), where

Vii =1 —(M )/3(M )

The locations of the maxima in these derivatives also pro-
vide additional finite-lattice transition couplings.

The data were first analyzed to determine the exponent
v by studying the scaling behavior of the logarithmic
derivative of M, M, and M . In Fig. 2 we plot these
logarithmic derivatives as a function of system size on a
log-log scale. The solid lines represent linear fits for
L ~ 28. Results for L & 28 were discarded because these
system sizes are not yet in the asymptotic regime, as seen
in Fig. 1. From these fits we conclude that the transition
is second order and estimate 1/v=0. 957+ 0.036 for M,
0.974+ 0.035 for M, and 1.015~0.032 for M . (The
error bars are 1 a uncertainties. ) Combining these results
we obtain a final value 1/v=0. 982~0.017 or v=1.018
~0.018. Within errors, this is identical to the d=2 Is-
ing model value v=1. As a further test of the critical be-
havior, we plotted the specific-heat maxima as a function
of lattice size on a semilogarithmic scale. The result,
shown in Fig. 3, indicates that the data are well described
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FIG. 1. Plot of the free-energy barrier hF(I ) as a function
of inverse lattice size.

FIG. 2. Log-log plot of the size dependence of logarithmic
derivatives of the order parameter. The solid lines are linear fits
including systems with I.~ 28. Errors in the individual points
are comparable to the symbol size.
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FIG. 3. Semilogarithmic plot of the specific heat vs lattice
size for the maximum value of the specific heat as well as the
specific heat at the infinite-lattice critical point Kt'. The solid

lines are linear fits including data for L~ 28. Where not
shown, error bars are smaller than the symbols.

by a linear fit (the solid line) for systems larger than
L =28 as would be expected for a two-dimensional Ising
model.

The locations of the peaks in the derivatives of the vari-
ous thermodynamic functions occurred at different values
of K, but all of the positions moved to larger K as the lat-
tice size increased. Using v=1 and a correction term
which varied as L, we fitted the positions of the maxi-
ma using finite-size-scaling theory. The result, plotted in

Fig. 4, showed that for L ~ 28 all of the positions could
be well fitted with an extrapolated value of K, =0.9202
+ 0.0003 in excellent agreement with the "exact" value
quoted earlier. If we analyze the behavior of the mo-
ments of the order parameter at K„we find that from M,
P/v=0. 118+'0.008 and from M 2P/v=0. 247~0.006.
These values also agree quite well with the 2D Ising re-
sult 2p/v=0. 25. Previous work has shown that several
different models which have second-order transitions in

the pure system, but fall into different universality
classes, apparently have Ising critical behavior when im-

purities are present [2]. It is intriguing that the introduc-
tion of quenched randomness into a model with a first-
order transition also yields critical behavior which is in-

distinguishable from that of the Ising model.
In summary, the result of rather extensive simulations

for the q =8 Potts model in two dimensions with two
kinds of randomly distributed ferromagnetic bonds is that
a second-order transition with Ising exponents results. It
is, of course possible, that there are small deviations from
2D Ising behavior, particularly in the form of logarithmic
corrections, which are simply too small for us to detect.
Any significant improvement would require at least an or-
der of magnitude more computer time or some other
method, such as Monte Carlo renormalization group. We
know of no theoretical predictions of the anticipated criti-
cal behavior and would encourage theoretical effort to ex-
plain our findings.
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FIG. 4. Size dependence of the estimates for finite-lattice
critical couplings Kf (L) for various thermodynamic quantities.
The solid curves are fits to the finite-size-scaling form including
the lowest-order correction term. The arrow shows the location
of the exact transition temperature.


