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We study D-dimensional polymerized membranes embedded in d dimensions using a self-consistent
screening approximation. It is exact for large d to order 1/d, for any d to order e=4 D, and—for d=D.
For flat physical membranes (D=2, d=3) it predicts a roughness exponent /=0. 590. For phantom
membranes at the crumpling transition the size exponent is v=0.732. It yields identical lower critical
dimension for the flat phase and crumpling transition Di, (d) =2d/(d+1) (D~, =a 2 for codimension 1).
For physical membranes with random quenched curvature (=0.775 in the new T=O flat phase in good
agreement with simulations.

PACS numbers: 64.60.Fr, 05.40.+j, 82.65.Dp

There are now several experimental realizations of po-
lymerized or solidlike membranes, such as protein net-
works of biological membranes [1,2], polymerized lipid
bilayers [3], and some inorganic surfaces [4]. Unlike
linear polymers, two-dimensional sheets of molecules with

fixed connectivity and nonzero shear modulus are predict-
ed to exhibit a flat phase with broken orientational sym-
metry. Out-of-plane thermal undulations of solid mern-
branes which induce a nonzero local Gaussian curvature
are strongly suppressed because they are accompanied by
in-plane shear deformations [51. As a result, even "phan-
tom" tethered membranes should be flat at low tempera-
tures [5,6], and exhibit a quite remarkable anomalous
elasticity, with wave-vector-dependent elastic moduli that
vanish and a bending rigidity that diverges at long wave-

length [7]. Excluded volume interactions, present in

physical membranes, further stabilize the flat phase [8]
but are usually assumed to be otherwise irrelevant to de-
scribe its long-distance properties. Motivated by recent
experiments on partially polymeriz'ed vesicles [31, studies
of models with quenched in-plane disorder have shown
that the flat phase is unstable at T=O to either local ran-
dom stresses [91 or random spontaneous curvature [10].

Flat membranes of internal dimensionality D and
linear size L are characterized by a roughness exponent g
such that transverse displacements scale as L~. Nelson
and Peliti (NP), using a simple one-loop self-consistent
theory [5] for D =2 which assumes nonvanishing elastic
constants, found that phonon-mediated interactions be-
tween capillary waves lead to a renormalized bending ri-
gidity xtt(q)-q " with ri= 1. Since g=(4 D —ri)/2—
they predicted g = —,

' for physical membranes. An
e =4 Dexpansion [7] confirm—ed that the flat phase was
described by a nontrivial fixed point, but with anomalous
elastic constants A, (q) —p (q) —q"", ri„& 0, with ri„
=4 —D —2g as a consequence of rotational invariance.
Thus, in general, g=(4 —D+ri„)/4 and the NP approxi-
mation corresponds to setting g„=O.

There is presently some uncertainty on the precise
value of the roughness exponent for physical membranes.

Numerical simulations of tethered surfaces display a
range of values for ( from 0.5 [2], 0.53 [11],0.64 [8,12],
to 0.70 [13]. On the other hand, the O(e) result [7] sug-
gests a value very close to the NP value —,

' (0.52 by
naively setting e=2). g should soon be measured from
experiments, either directly from light scattering on dilut-
ed solutions [4] or indirectly from the scale dependence of
the elasticity [141 of lamellar stacks of solid membranes
presently under experimental study. The buckling transi-
tion [61, if observed, is controlled by a single exponent re-
lated to g. It thus seems desirable to explore further pos-
sible theoretical predictions for (.

In this Letter we introduce a self-consistent approxima-
tion which improves on the Nelson-Peliti theory [5] by al-
lowing a nontrivial renormalization of the elastic moduli.
It is exact in three different limits and compares well with
numerical simulations. We construct two coupled self-
consistent equations for the renormalized bending rigidity
xtt(q) and elastic moduli ptt(q), hatt(q) and solve them in

the long-wavelength limit. xtt(q) is determined by the
propagator for the d, =d Dcomponents h —of the out-
of-plane fluctuations G(q) —1/q" " while the elastic
moduli are determined by the four-point correlation func-
tion of h fields. Physically, our calculation includes the
additional effect of relaxation of in-plane stresses by out-
of-plane displacements. As a result, curvature fluctua-
tions soften elastic constants and screen the phonon-
mediated interaction. A similar self-consistent screening
approximation (SCSA) was introduced by Bray [15] to
estimate the ri exponent of the critical O(n) model (here
d, plays the role of the number of components n) and
amounts to a partial resummation of the 1/d, expansion.
By construction, the method is exact for large codimen-
sion d, to first order in 1/d, and arbitrary D. Solving
self-consistently then leads to an improved approximation
of ri(d„D) (and thus g) for the small (physical) values of
dc.

The attractive feature of our theory is that it becomes
exact in several other limits. First, because of the Ward
identities associated with rotational invariance, we find
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that rl(d„D) is exact to first order in E=4 —D for arbi-
trary d, and is thus compatible with all presently known

results [6,7]. Second, for d, =0 it gives rl=(4 —D)/2
which is the exact result since clearly g„=o for d=D,
and [7] y1„=4—D —2yl. This is at variance with the
O(n) model for which the SCSA [15] is not exact for
n=0. Thus we expect this method to give more accurate
results for the present problem. Two-loop calculations
are in progress [16] to estimate the deviation. An en-

couraging indication is the similarity of our method with
the remarkably accurate self-consistent approximation of
Kawasaki [17] for the critical dynamics of the binary
fluid mixture, which was shown to be exact to order e,
again because of Ward identities, and incorrect to order

by a tiny amount. We also apply this method to the
crumpling transition of phantom membranes, and to flat
membranes with quenched disorder. Details can be found
in Ref'. [16].

In the flat phase, the membrane in-plane and out-of-
plane displacements are parametrized respectively by a
D-component phonon field u, (x), a=1, . . . , D, and a

d, =d —D component out-of-plane height fluctuations
field h(x). A monomer of internal coordinate x is at po-
sition r(x) =[x,+u, (x)]e,+h(x), where e, are a set of
D orthonormal vectors. The eAective free energy is the
sum of a bending energy and an in-plane elastic energy

FIG. l. Graphical representation of the SCSA: (a) self-

energy and (b) interaction. (c) UV finite vertex and box dia-
grams.

(most relevant terms):

F=„d x —(V h) +pu p+ —u„

where the strain tensor is

u p= p (8 up+clpu +8 h'mph).

To discuss the SCSA in the flat phase it is convenient to
first integrate out the phonons [1,5], and to work with the
d, -component h field. In terms of Fourier components
the free energy takes the form of a critical theory:

4F,rr
= dk k !h(k)—!

'+ ) dk ) dk 2 dk i R.p yp(q )k t.k 2pk irk 4ph(k ) ) h(k 2)h(k 3) h(k 4)
C

(2)

with q =k~+k2 and k~+k2+k3+k4=0 and we use Idk
to denote fd k/(2yr) . The four-point-coupling fourth-
order tensor R(q) is transverse to q, the longitudinal part
having been eliminated through phonon integration. It
can be written as R(q) =bN(q)+ @M(q) with

T T1
A,p yb

= P,pPyp,D —l

Map, yb
=

2 (PayPpg+ PaaPpy ) Nap, ya ~

T T T T

where P,p=8,p
—q,qp/q is the transverse projector. p is

the shear modulus and b =p(2@+DR)/(2p+X) is pro-
portional to both shear and bulk moduli. The conveni-
ence of this decomposition is that M and % are mutually
orthogonal projectors under tensor multiplication (e.g. ,

M,p ysMys„, =M,p„„,etc.).
We set up two coupled integral equations for the prop-

agator of the h field and for the renormalized four-point
interaction. We want to evaluate (h;( —k)hj(k))
=8;~G(k) with G '(k) =rcpt(k)k =rck +cr(k), where
cy(k) is the self-energy. The SCSA is defined in diagram-
matic form by the graphs of Figs. 1(a) and 1(b), where
the double solid line denotes the dressed propagator
G(q), the dotted line the bare interaction R(q), and the
wiggly line the "screened" interaction R(q) dressed by
the vacuum polarization bubbles. We thus obtain two
equations, one for cr(k) which determines rl, and the oth-

cr(k) = k, kpkyks dq R,p, yq(q)G(k q), —=2
C

R (q) =R (q) —R (q) fI(q) R (q ),

(4a)

(4b)

where H, p yq(q) =fdpp, pppyp&G(p)G(q —p) is the vacu-

um polarization and tensor multiplication is defined

above. Because of the transverse projectors, only the

component H(q),„of H(q) proportional to the fully

symmetric tensor Szp yb 6+p6yp+ l$+y6pp+ 8+bBpy contrib-
utes in (4b). Defining fI(q),„~=I(q)S, simple algebra
gives R (q) =P(q) M+ b (q)N with renormalized shear
and shear-bulk moduli, and the new equations

(sb)

We now solve these equations in the long-wavelength
limit. Substituting G(k) —cr(k) —Z/k" " in (5a) and

(5b), with Z a nonuniversal amplitude, we find that the

vacuum polarization integral diverges as

I(q) —Z'W (D, q) q (6)

b (sa)
1 + 2I (q)p

' 1+(D+ I)l(q) b

cr(k) = 'I d [kP ( )kl G(k ) .D-1 g
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where r1„=4—D —2rl is the anomalous exponent of pho-
nons. Substituting in (5a) and (5b), and defining the am-
plitude,

dqq""(k q—) ' "'[kp (q)k]2=8(D, t))k

one finds (for p, b & 0) that the Z and k "factors can-
cel and that t) is determined self-consistently by the equa-
tion for the amplitude:

d, =D/(D+ I ) [e(D, g)/W (D, g)],
which after calculation of the integrals defining A, B gives

2 r[i+ ,' q]—r[2 q]—r[q+D]r[2 —,
' —q]

d, =—D(D —i)
9 r[ ,' D+ ,'-q]r—[2 ri —,' D—]r—[q+,' D]r[—-,' D+2 —,' r)]—

(7)

q(D =2,d, ) = 4

d, +(16—2d, +d )'i

For D =2 this equation can be simplified, and one finds
(Fig. 2) which coincides with the exact result [6,71, as expected by

construction of the SCSA. Similarly, expanding (7) to
(8) first order in e =4 —D one finds

Thus for physical membranes we obtain g =0.821,
t1„=0.358, and

~is —i =0.590. . .
JiS+1

(9)

+02 1
(for D-2) (io)

roughly at midvalue of the present numerical simulations.
From (5) we also obtain limq pX(q)/P(q) = —2/(D+2)
(i.e., a negative Poisson ratio).

Expanding result (7) in 1/d, one obtains

8 D —
1 r[D]71=

d, D+2 r[D/2]'r[2 —D/2] d'

2+ d, /12

also in agreement with the exact result [6,7]. This is not
a general property of SCSA. Here it can be traced to the
vertex and box diagrams of Fig. 1(c) being convergent
Indeed, because of the transverse projectors in (2) and
(3) one can always extract one power of external momen-
tum from each external h leg, which lowers the degree of
divergence from naive power counting. As a result, if one
decouples the four-point vertex R via a mediating field,
the only counterterms needed are for two-point functions.

We have analyzed the crumpling transition of phantom
membranes by the same method, applied to the isotropic
theory of Ref. [18]. The exponent rl=ri„at the transi-
tion is determined by [16]

D(D+1)(D—4+ ri)(D —4+2ri)(2D —3+2ti)I [ i tI]l [2 —ti]r[ri+D]I [2 —
t rl]

2(2 —tl) (5 —D —2ti) (D+ tl —1)I [ —,
' D+ —,

' ti]I [2 —
tl

——,
' D]I [tl+ —,

' D]I [ ,' 8+2 ——,
' ti]— (i 2)

At the transition the radius of gyration scales as Rg-L
=0.535 and v =0.732 (Haussdorf dimension dH =2.73).
is irrelevant for the membrane at the crumpling transi-
tion is determined by the condition d„=4D/[4 —D
—tk„(d„)l. Using (12) we find that d„(2) =4.98.

The present method gives interesting predictions for
lower critical dimensions. In the flat phase, orientational
order (i.e., in Vh) disappears for D (Dl„where 2
—tl(Dl„d, ) Di, . From (7) this is equivalent to d,

Dlg(Dlg —
1 )/(2 —Dl, ). On the other hand, the lower

critical dimension Dl, (d) for the crumpling transition is

defined by 2 —rl«(Di„d) =Di„or equivalently from
(12), d=Di, /(2 D(, ). Since d=D/(2 —D) is clearly—
equivalent to d, =D(D —1)/(2 D) we find that the-
lower critical dimensions of the crumpling transition and
of the Aat phase, as predicted by SCSA, are identical,
and given by Di, (d) =2d/(1+d). Since they originate
from very diAerent calculations, this indicates that the
SCSA is quite consistent. For codimension 1 manifolds

Di, =J2 and for fixed embedding space d=3, Di, = 2.
Di, increases from Di, =l for d, =0 to Di, =2 when

0. 85

0.S

0.75

0. 7

0.65

0. 6

FIG. 2. g as a function of d for two-dimensional membranes
D=2. The solid curve is the SCSA result (8). The long-
dashed-short-dashed curve is the O(E) result, setting a=2.
The dashed curve corresponds to r1=2/d chosen (somewhat ar-
bitrarily) in Ref. [61 as a possible interpolation to finite d
(asymptotic to the solid curve for d ~).

"with v=(4 D —tk, )/2. For —d=3 and D=2 we find rk,
The embedding dimension d„(D) above which self-avoidance
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d, ~ as expected. Note that for d & 3 self-avoidance
cannot modify the above results for D~„while for d & 3 it

is an open question.

We can compare (8) and (12) with recent simulations
[19] of D =2 menibranes with self-avoidance in higher d, .

The membranes are found flat in d=3, 4 with j(d
=3) =0.64 ~ 0.04, j(d =4) =0.77 ~ 0.04, whereas we

obtain 0.59,0.67, respectively. The membrane is crum-

pled in d=5 with v=0.8+ 0.06, although d=5 seems al-

most marginal, whereas we find v=0.8 at the crumpling
transition where self-avoidance is irrelevant, although al-

most marginally so.
Flat membranes with random spontaneous curvature

are described by adding the term —Jd xc(x) V h(x) in

the energy (I), where c(x) are Gaussian quenched ran-
dom variables [10]. Within a replica symmetric SCSA,
we find a marginally unstable T=O fixed point, i.e., a

long-wavelength solution only if T 0 first. Defining the
replica connected and off-diagonal exponents r), tI', by

(h( —q)h(q)), -q " "', (h( —q)h(q))-q

we find [16] at this fixed point t)' = rI, t)(d„D)
=r)„„„,(4d„D). Thus one can simply replace d, in the
pure result by 4d, . Again this agrees with the I/d, and e

expansions [10]. For physical membranes D=2, d, . = I,
we find from (8)

t) =2/(2+ J6) =0.449, (=0.775,

comparing well with the numerical simulation [10] result
(=0.81+0.03. By analogy with the random-field prob-
lem [20], it is quite possible that the equality tI =tI', con-
jectured in Ref. [10] to all orders, can be corrected when

replica symmetry breaking is included.
In conclusion, we have presented a self-consistent

theory of polymerized membranes which becomes exact
in three limits (large d„small e =4 —D, and d, =0). By
construction, it satisfies the exponent relations g„=4
—D —2ti and [16] I/v'=D —2+ti. These re]atin~ .' are
exact in the true theory because of rotational invariance

[6,7]. It thus predicts v'=1.218 and 6'=1.436 for the

buckling transition exponents [6]. It contradicts the con-

jecture [2] (= -,'-.
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