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A new kind of instability is predicted for a system involving activator and inhibitor kinetics in a reac-
tive flow. It is shown that a differential flow of activator and inhibitor, achievable, e.g., by selectively

binding one component to a support, can destabilize the spatially homogeneous state of the system in a

similar way as differential diffusivity does in the case of the Turing instability. The differential-flow-

induced chemical instability is of the traveling-wave type. It is free from the restrictions of the Turing
instability on the diffusion coefficients and can thus be expected to occur in a wide variety of natural and

artificial systems.

PACS numbers: 47.20.Ky, 05.70.—a, 82.20.—w

Interest in mechanisms of pattern formation has been
further stimulated by the experimental discovery of Tur-

ing patterns [1] in the chlorite-iodide-malonic-acid sys-
tem [2]. As Turing predicted [1], a homogeneous and

otherwise stable reactive system may lose its stability and
form inhomogeneous patterns due to the interaction of
diffusion and reaction. The mechanism is believed to be
fundamental to morphogenesis in biological systems [3]
and it is likely to also be operative in various physical sys-
tems like plasmas, solids, solid-liquid interfaces, super-
conductors, lasers, and hydrodynamics (Ref. [4] and
references therein).

The Turing instability can only occur if a system in-

volves an autocatalytic species (as well as an inhibitor)
and if the diff'usion coeScient of the inhibitor is

sufftciently larger than that of the activator [3]. When
such a system is kept homogeneous, e.g. , by stirring, it
settles in a steady state through the balance of activation
and inhibition. On the other hand, when a local concen-
tration fluctuation arises in an unstirred system, diffusion
comes into play in addition to chemical relaxation.
Diffusion tends to remove or replenish species that are lo-

cally in excess or depleted, as the case may be. However,
this process occurs with different rates for the two
species, proportional to their diffusivities. Hence the bal-
ance between the activator and the inhibitor that existed
in the perfectly stirred system may be broken in such a
way as to allow the activator to grow locally [3]. The pri-
mary role of diffusion in the instability is, thus, to spatial-
ly disengage the counteracting species.

The starting point of this paper is the notion that the
key species may be disengaged more generally by their
diA'erential transport. We show here that the homogene-
ous steady state may be destabilized by flows of activator

and inhibitor at diff'erent flow rates, regardless of which

one is faster. This makes the present mechanism free of
the rather severe restrictions of the Turing instability on

the diff'usion coefficients and thus much more general.
We refer to the mechanism as the diff'erential-flow-

induced chemical instability (DIFICI).
Consider a situation where one of the species, Y, is im-

mobilized on a solid support [5] while the X species flows

through the one-dimensional reactor with velocity v. This
system is described by the reaction-flow equations

Xx =a]]x+a]2y+ v

J =a2]x+ap2$,
(2)

where X=XO+x, Y= Yo+y, and stability requires that
a]]+a22 & 0 and h, =a]]a22 —a]2a2] & 0.

Assume now that our system is either spatially infinite
or periodic (a ring). Then we can use the spatial Fourier
expansion x(r, t ) =fxk(t)e'""dk and obtain the equations
for the Fourier components,

x/, =(a//+ikv)x/, +a/2y/, ,

(3)
3'I =a2]XI +a22$'I .

The eigenvalues of system (3) are

X=f(X,Y)+v
r '

Y=g(X, Y),

where the spatial coordinate axis is chosen to lie in the
direction of the flow. We assume that the chemical reac-
tion has a stable steady state Xo, Yt/ [i.e., f(XO, Yo)
=g(XO, Yo) =0] when run in a perfectly stirred vessel.
Linearizing the system near the steady state results in

A/ 2= —,
' [a +/t+a2i2k ~v[(a//+a22) —4h —k v +2ikv(a» —a22)l '

The real part R of the square root in Eq. (4) is

(I/ jg) [[(Q k 2v 2)2+4k 2, 2(a a ) 2] I/2+ Q k 2 2] //2

where Q =(a//+a22) —4h.
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It can be shown that the sign of dR/d(k ) is either al-
ways positive (if ai2a2~ (0) or negative (if a~2a. ) &0)
and consequently that R is a monotonic function of k.
Then, depending on the sign of dR/d(k ), Rek~(k) rises
(falls) monotonically from Rek, ~ (0) to Rek ~

(~ ) and
Rek2(k) falls (rises) from Rekq(0) to Rek2( ). It fol-
lows that Remi(~) =a~i and Rekq( ) =aqq if a~~ & az2
and that Remi(~) =a22 and Rekz(~) =a~i if a~~ & a22.

Let us assume that a ~ ~
& a22. Furthermore, if a]] & 0

and still subject to a~~+a22 & 0, then it is clear that Rek~
becomes positive at sufficiently large k and that the sys-
tem becomes unstable against short-wavelength perturba-
tions. The critical wave number k, [i.e., such that
Res, (k, ) =0] is

When diAusion is included, the dispersion relation is

Rek) = —, [a))+a22 —(D(+Dz)k

+ (I/O&) [(q '+p') '"+q] '"]

where p = 2kv [a ~ ~

—a 22
—(D ~

—D2) k l and

q =[a~~ —a22 —(D~ —D2)k l +4a~za2~ k t.
(7)

To illustrate this DIFICI case of spatial instability on

hand of an experimentally verifiable system, we consider
here the Puschinator model [6] of the Belousov-Zhabo-
tinsky reaction,

a ) )+a22
a ) )a2$

(6)

i)x 1 y x —
px(1 —x) — 2qa +P

t)r e 1
—

y x+p
(8)

Since X, ~ is always complex for k & 0, the instability is of
the traveling-wave type.

y=x —a
Br 1

—
y

where

k)A kiA
[Fe(phen) 3

+]= V=Cy, [HBrOz] =X= x, e =
2k4

'
k4C

'

k4Ks~

(0 iAhp)

2k4k7 k4C 2k4k j38p=
kiks (kiA) hp (kiA) hp

C =[Fe(phen)3 +]+[Fe(phen)3 +], A = [NaBr03], 8 = [CHBr(COOH)2],

hp is the acidity function, q is the stoichiometric factor,
and k; are the rate constants [6,7]. (Here we use V/y for
[Fe(phen)3 +] instead of the traditional notation Z/z. )
Dispersion curves Remi(k) were calculated in the absence
of diffusion as functions of k for different values of the
flow rate v, as shown in Fig. 1(a). As one can see, for

any velocity v there is a critical wave number given by
Eq. (6) above which the homogeneous state becomes un-

stable.
In real systems, diffusion must be considered in addi-

tion to flow. Introducing autocatalyst diffusion (the inhi-

bitor is immobilized) through a diffusion term in the first

equation in (1) produces the short-wavelength cutofl' in

the dispersion curves, as shown in Fig. 1(b). This entails
the appearance of a threshold flow velocity v;„, below
which the homogeneous steady state is always stable.
This critical velocity as well as the critical wave number

k, are implicitly given by the conditions Rek~(k, ) =0 and
d [Remi(k, )]/d(k ) =0. The accurate explicit expres-
sions for k, and v;„are rather cumbersome in this case
but a rough estimate is simple: k, —(~a~~+a2q~/D) '

and i;„can be evaluated through Eq. (6) as
Um;„—[(aii+azz)AD/aiiazq]' . lt is also worth noting
that the dispersion curves at constant diffusion ratio
8 =D;„i/D„i parametrized by . resemble closely those of
the Turing case pararnetrized by 6 in the absence of the
flow [Fig. 1(c)].

To study the dynamical consequences of the D I FIC I

me have numerically integrated the reaction-ditTusion-

flow equations [Eq. (1) supplemented with a diffusive

term D„'d x/Gr ] for the Puschinator model as described
elsewhere [7]. Two configurations of the 1D reactor were

studied. One was circular, with periodic boundary condi-

tions. The other corresponded to a semi-infinite tube,
fixed in the frame of immobilized ferroin species, that
was fed with an input flow containing neither ferroin nor

the autocatalyst HBrOz (Dirichlet's boundary condition).
In the circular reactor, the perturbation of the homogene-

ous state was imposed as a cosine function of the spatial

coordinate with an amplitude equal to 1% of the steady-

state value. In the tubular reactor, the boundary condi-

tion itself acted as the perturbation. In both configu-

rations the perturbations evolved into pulses that traveled

along the tube like ordinary pulses in excitable media as

long as the flow velocity exceeded the minimum value.

Otherwise they decayed to the stationary homogeneous

state in the opposite case. The evolution and asymptotic
form of a typica1 pu1se train traveling around the circular
reactor are shown in Fig. 2.

The diAerence between the waves simulated here and

ordinary trigger waves [8] lies in their origin. The gen-

eration of trigger waves is always associated with a local

pacemaker and local inhomogeneity [8] that imposes a

finite perturbation (either single, periodic, or multiple

aperiodic) on the system and thus locally drives it above

the excitation threshold.
The pacemaker emits waves with radial symmetry. It
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FIG. 2. The evolution of a perturbation in the circular reac-
tor with flow of the X species. (a) The initial stage of the insta-
bility; (b) the instability has developed into a pulse train travel-

ing around the medium; A 0.15, v 0.2, and all the other pa-
rameters are as in Fig. 1. The vertical scale in (b) is 10 times
as large as in (a).
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FIG. 1. (a) The real part of the eigenvalue as a function of
the wave number for different flow velocities U (cm/sec)
(without diffusion); (b) the same with diff'usion of X species
added, D~ 2X10 5; (c) the real part of the eigenvalue for
different diffusion ratios 8 and zero flow velocity. Parameters of
the Puschinator model are A =0.125, B =0 2, C =0 0003,
hp 0.03.

may be, and that Rek rises to infinity with k (if the sur-

face tension of the interface can be neglected). On the

other hand, the asymptotic (at large k) growth rate of
perturbations in the DIFICI case is determined by a~1,
i.e., by local kinetics, and the local kinetics makes the sys-

the perturbation is smaller than the threshold trigger
waves do not appear and the system remains stable and
homogeneous. In the present case, due to the instability,
the waves develop all over the system from infinitesimally
small perturbations and are asymmetric: They propagate
only in the direction of the flow.

This DIFICI resembles the Kelvin-Helmholtz instabili-
ty of inviscid shear flow in hydrodynamics [9,10], except
for one significant diA'erence. Since the Kelvin-Helm-
holtz instability occurs in a conservative system (as long
as viscosity is neglected), such a system may be destabi-
lized by a flow of arbitrarily low velocity. This is
reflected by the linear dispersion relation between Rek,
and the perturbation wave number k (Fig. 3) and physi-
cally by the facts that inviscid shear flow may be destabi-
lized by perturbations at arbitrary k, however small it
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FIG. 3. The real part of the eigenvalue as a function of the
wave number, curve a, for the Kelvin-Helmholtz instability and,
curve b, for the DIFICI.
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tern stable against smooth perturbations.
The present instability also has much in common with

the Turing instability. The obvious analogy is that the
necessary condition for both instabilities is the same: aii
or a2~ must be positive, implying the presence of an auto-
catalytic species. (If a diagonal element, either an't or
a22, is positive then the corresponding species gro~s ex-
ponentially provided that the concentration of the other
species is fixed. ) This similarity is illustrated by the
dispersion relation illustrated by Figs. 1(b) and 1(c)
where the latter represents the Turing case. The same
decay rates at k =0 and the maximal growth rates of per-
turbations (=at t) for both Turing and differential-flow
cases illustrate the fact that the ultimate cause of the in-

stabilities in both cases is the local autocatalytic kinetics
of one of the species while the transport, either diflusive
or flow, serves merely to disengage the autocatalyst from
the inhibitor response.

awhile the occurrence of the Turing instability depends
crucially on the ratio of difl'usion coeflicients 8 (with
6) l, a condition that is usually beyond experimental
control although theoretically 6 is often treated as the
control parameter), the flow-induced instability is deter-
mined merely by the magnitude t

i
of the relative flow

velocity (or rather by the ratio it /MD when diffusion is

included). Thus it is immaterial which of the two control
species is immobilized: Fixing the inhibitor [5] promotes
the DIFICI while this would prevent the Turing instabili-

ty from occurring. Furthermore, the flow rate is easily
controlled over a wider range. Therefore, we foresee that
this instability occurs in a broad class of experimental
systems.

One can expect that the difI'erential-flow-induced
chemical (or chemohydrodynamic) instability occurs
whenever there is relative motion of activator and inhibi-
tor species of a system. This may be important in many
fields ranging from chemistry to physics to biology. An

experimental verification of the eFect predicted above has

been achieved for the Belousov-Zhabotinsky reaction.
The results will be published elsewhere.
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