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Circular Dichroism in Double Photoionization
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One-photon two-electron ionization of an atom by circularly polarized light yields triply differential
cross sections different for left and right circular polarization. Necessary kinematical conditions for a
finite dichroism are worked out. A numerical calculation for helium which employs correlated wave
functions sho~s the angular correlations of the escaping electron pair to be very different for left and
right circular polarization such that the effect should be observable in a coincidence experiment.

PACS numbers: 32.80.Rm, 33.55.Ad

It is well known that for single photoionization of an
atom the polarization of the incident light enters only
kinematically into the differential cross section; see, e.g. ,
[1]. For circular polarization the angular distribution of
photoelectrons is given by

complex unit vector and employ a tensorial calculus
which formally resembles that used by Fano and Macek
[5] in their polarization analysis of dipole light emitted
from oriented and aligned targets. To this end we write
in Eq. (2) for convenience
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where oo is the total cross section, P is the asymmetry pa-
rarneter, k is the direction of incident light, p is the
momentum of the photoelectron, and P2 is the second
Legendre polynomial. Equation (1) holds for right and
left circularly polarized light, and also for unpolarized
light. For linearly polarized light one has simply to re-
place P by —2P and k by the direction of the electric
field strength in Eq. (1). In other words, switching from
one polarization to another yields no new physical infor-
mation. This, however, is not true for double photoion-
ization. It is the purpose of this Letter to show that the
light polarization, in particular the helicity of circular po-
larization, enters dynamically in a nontrivial way into the
angular correlation pattern of the photoelectron pair.

Our following analysis for double photoionization is

based on first-order perturbation theory and on the dipole
approximation for the radiation field. As usual we as-
sume randomly oriented initial target atoms, no observa-
tion of the photoions, and no spin analysis of the photo-
electrons. Only under these circumstances does Eq. (1)
hold for single photoionization. For double photoioniza-
tion the triply differential cross section (TDCS) for the
pair of photoelectrons detected in coincidence including
energy analysis is then given by [2-4]
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with the constant C =4m aaoE„p,pb. Here, energies E
and momenta p of the photoelectrons are labeled by in-
dices a and b, a is the fine-structure constant, ao is the
Bohr radius, E„ is the incident radiation energy, D
=g„r„ is the dipole operator in length form, and e is the
polarization vector. Equation (2) averages over the ini-
tial magnetic sublevels Af;, and sums over the magnetic
sublevels Mf of the photoion.

We focus now on circular polarization where i is a
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where the scalar operator 5=[1/(2J;+1)]+M, l@t)(4;I
has been introduced. Since SD is a vector, we recouple
in the right-hand side (rhs) of Eq. (3) according to [6]

(E" D) [e (SD)]=
3 [D (SD)]+ 2 (8& e*) [D X (SD)]

+Tz(i, e*)T2(D, SD), (4)

where T2 stands for a tensor of rank 2. Switching from
left to right circularly polarized light is described by re-
placing i by its complex conjugate i*. The vector prod-
uct term on the rhs of Eq. (4), the only term being odd
with respect to this replacement, constitutes therefore the
quantity sensitive to the helicity of circular polarization.
Let us make the convention e (t".*) to describe left (right)
circularly polarized light, and let us denote the difference
of TDCSs for left and right circularly polarized light, re-
spectively, by 6 =TDCS(left) —TDCS(right). Further
simplification is achieved by choosing the z axis as the
direction k of the incident light. With e'=(1 J/2)(l, i, 0)

and ex i*= —i k we conclude

(5)
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with real coefficients yL L, and bipolar harmonics defined

Basically, this identifies h, as the expectation value of the

pseudovector D && (SD) [7].
We must now show that the dichroism h, given by Eq.

(5) is finite. Necessary kinematical conditions for this

may be derived from the tensorial structure of the matrix
element in Eq. (5) which ensures that 5 has the harmonic

expansion [8]
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and by employing a Clebsch-Gordan series for two bipo-
lar harmonics. This series (see [8] for details) shows then
that the asymmetry parameters yL L, contain Clebsch-
Gordan coe%cient as factors,

YL,L Z (i oi olz.o)(i&oitI0Iz, o)rl I ", (9)
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where l„lb as well as l,', lb are the orbital angular mo-
menta of the electrons labeled by indices a, b, respective-
ly. Usually, the initial state and the final ion state are
eigenstates of parity. Therefore, the ejected electron pair
also has well-defined parity, i.e., for all contributing an-

gular momenta l„lb the sum l, +lb is either even or odd.
The Clebsch-Gordan coefficients in Eq. (9), as well as the
anisotropy coe%cients yL L„are therefore finite if and

only if L, +Lb is even.
The above analysis is su%cient to prove easily that

there is no dichroism in the following cases: (1) In non-
coincident experiments. (2) If the momentum p, is

parallel or antiparallel to pb. (3) If the three vectors

p„pb, and the direction of incident light k are linearly
dependent. (4) If the ejected electrons have equal ener-

gy. (5) If one of the escaping photoelectrons is an s elec-
tron,

Proof. —(1) Integration of "Pin '(p„pt, ) over one of
the unit vectors yields zero because L, +Ls is even. (2)
For p, =pb we employ in the definition of the bipolar
harmonic a Clebsch-Gordan series. This shows the bipo-
lar harmonic to be proportional to the Clebsch-Gordan
coefficient (L,ozt, OI10) which is equal to zero for even

values of L, +LI, . For pq
= —p, we use YI ( —p, )

=( —I)'Yt (p, ) and argue as above. (3) With the z

axis in the direction k we parametrize j, and pb by ordi-

P/ '(a, b) = g (i,m, lsmq Iim) YI (a) YI, , (b) (7)
m, mb

which are imaginary for (i,m) = (1,0) such that 5 is real.
The parametrization Eq. (6) may be proven by expanding
the final state into partial waves,

Ji

()

FIG. 1. Coordinate frame and experimental setup. Circular-
ly polarized light is incident along the z direction. One electron
counter (b) is in the x direction whereas the other one (a) can
be rotated in the x-y plane.

4; =N exp[ —a(r, + rt, ) +Pr,s] (lo)

with N=1.474, a =1.858, P=0.255, and for the final
state we start from a wave function which describes two
outgoing electrons and satisfies exact Coulomb boundary
conditions (see [10] for details),

nary spherical angles. All terms in the bipolar harmonics
in Eq. (5) contain factors sin[m(p, —pb)] =0 because p,

wb =x—and m is an integer. (4) For equal energies the
TDCS is variant with respect to the exchange p, pb.
The dichroism is then equal to zero because the bipolar
harmonics in Eq. (6) are odd with respect to this ex-
change. (5) Consider Eq. (9) and put, e.g. , I, =l,' =0. A
finite value for yL L, is obtained only for L, =0. There is

no even value for Lb such that the bipolar harmonic in

Eq. (6) is finite.
In order to estimate the amount of the dichroism we

have performed a numerical calculation for helium using
correlated wave functions for both the initial and the final

state. The ground state has been described by
Hylleraas-type function [9] given by

with

p p&(ro rQ) (2e) e' ' "e ' I (1+ia, ) ~F~( —ia, ;1;—i (p, r, +p, r, ))
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and employ for our calculation its odd-parity singlet part.
The experimental setup we investigate below is shown in Fig. 1. We chose a right-handed Cartesian coordinate frame

with the z axis along the direction of incident light. We expect an observable dichroism, e.g. , if the three vectors p„pb, k
are perpendicular to each other because the lowest-rank tensor in Eq. (6) shows A ec (p, xps) k; also see our statement
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FIG. 2. The TDCS for He as a function of the energy E, of
the electron escaping in the y direction. The other electron es-

capes in the x direction; see Fig. 1. The total excess energy is

50 eV. L and R stand for left and right circular polarization.

FIG. 3. Angular dependence of the TDCS for He. One elec-
tron with energy Eb =45 eV is detected in the x direction, the
other one with energy E, 5 eV is detected at the angle p in the
x-y plane; see Fig. 1. L and R stand for left and right circular
polarization.

(3). We fix, therefore, one electron detector in the x
direction perpendicular to k, and label this electron with

the index b. In Fig. 2, the other electron (a) is detected
in the y direction corresponding to ta =90' in Fig. 1. The
total excess energy is E,+Eb =50 eV. The two curves
represent the TDCS in atomic units for left (L) and right
(R) circular polarization versus the energy Eb of the elec-
tron escaping in the x direction. It is clearly seen that the
two TDCS are equal at 25 eV when both electrons have
the same energy [statement (4)]. In this example the di-
chroism is largest for E&/E& =9. Although the finite
dichroism constitutes a broken chiral symmetry of the
electron pair as a whole, Fig. 2 shows nevertheless a re-
duced symmetry: Except for an exchange of left and

right circular polarization the two curves are invariant
against reflection at the energy E, =Eb =25 eV.

Figure 3 elucidates the angular dependence of the di-
chroisrn at fixed energies. The total excess energy is

again E, +Eh=50 eV with the asymmetric sharing E,
=5 eV, Eb =45 eV. The faster electron (b) escapes
along the x direction whereas the slower one (a) escapes
in the x-y plane at an angle p relative to electron (b), i.e.,

p, pb =cosy; see also Fig. 1. The two TDCS curves ob-
tained for left and right circular polarization cross each
other for kinematical reasons at @=0,corresponding to
p, llpb, and at p = 180, corresponding to p, II

—pb. Simi-
larly as in Fig. 2 the electron pair shows a symmetry.
The two TDCSs interchange under the transformation

360' —p. From this it also follows that the TDCS

for unpolarized light (being equal to the average of the
two curves shown in Fig. 3) is invariant under

360' —p. It is clearly seen that the dichroism re-

ported in Figs. 2 and 3 is large and should be observable
experimentally.
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