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Identical Bands and the Varieties of Rotational Behavior
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It is shown that identical rotational energy spacings in pairs of even-even nuclei do not set these nuclei
qualitatively apart from others. Rather, they represent the terminus or limiting case of a continuous
range of spacings whose behavior is controlled by the balance between residual p-n and pairing interac-
tions and whose phenomenology can be simply described.
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The recent discovery [I] of rotational bands in adjacent
nuclei in which transition energies are nearly identical
has caused intense interest and excitement. First noted
[I] in high spin superdeformed states of adjacent even-
even and odd mass nuclei, the phenomenon has since been
identified, by a group from Argonne, in low spin states in

pairs of even-even nuclei as well [2]. Other studies [3] of
low spin states of adjacent even and odd mass nuclei in

the deformed rare-earth nuclei confirm the frequent oc-
currence of similar moments of inertia in neighboring nu-
clei. Still more recently, it has been noted [41 that identi-
cal bands at low spin are not limited to regions of stable
deformation or nearby nuclei but are widespread, can
occur in pairs of even-even nuclides as separated as "

Dy
and Os, and are found even in regions in which isotopic
sequences display phase transitional behavior. Apparent-
ly therefore, the identical band phenomenon of nearly
identical moments of inertia is quite general. Presum-
ably, it must result from basic features of nuclear shell

structure and interactions.
It is the purpose of this Letter to point out a key new

aspect of this phenomenon that sheds light on its charac-
ter and origins. Specifically, we will show that despite the
apparently extraordinary character of these identical
bands, they do not at all represent a "singular" phenom-
enon. Rather, they are the terminus or limiting case of a
smooth and continuous gradation or range of behavior.
Moreover, it will be shown that the degree of similarity of
rotational band structure depends in a simple way on the
competition between the residual valence p-n interaction
and the like-nucleon pairing interaction.

It is useful to phrase the discussion in terms of a mea-
sure of the changes in various quantities across a range of
nuclei. We therefore define, for any quantity A,

F(L) = lx~ —+t ~i+2,

where the subscripts refer to nuclei of mass Ai and A2.
F(X) is the fractional change in X between nuclei I and

2. Thus, the degree of "equality" of rotational spacings is
measured in terms of

F.{E,) =IE„{J)—E„(»II'E„{J), (2)

8(E2;0,+ -- 2,') = e'g,',5

16m
(3)

where go=(3i'~5tr)ZRoP(1+0. 16P). The 8{E2) val-
ues are taken from the recent compilation of Raman et
al [6]. The pairing .6 is obtained from the standard
binding energy diAerence equation linking four neighbor-
ing nuclei as discussed in Ref. [5].

where E„,(J) =E(J) —E(J 2) in n—ucleus i The . cri-
terion for nearly identical bands is that the fractional
change in E„(J) is much less than that in some standard
measure of expected change such as A' '. In practice,
this corresponds to FJ(E,) (( l.

To address the issue of this Letter, we want to investi-

gate whether identical bands are qualitati»el@ different
than other pairs of bands or whether bands of virtually
any arbitrary degree of similarity or dissimilarity can be
found. To do so, we investigate FJ(E„) values in a de-
formed mass region (Dy-Os, /V ~ 88) which is charac-
terized by varying behavior but yet is also one in which
extensive sets of identical bands have been found [4]. To
assess the behavior of FJ(E,) values in such a region, it is

useful to compare them to changes in some physical vari-
able that is likely to be correlated with rotational ener-
gies. One obvious candidate is the deformation which i»

traditionally related to the moment of inertia in the stan-
dard Bohr-Motteison model [5]. However, it is also well

known [5], especially from studies of high spin states,
that moments of inertia depend on pairing. Fortunately,
both these quantities can be extracted empirically for
many nuclei —the quadrupole deformation ~: from mea-
sured 8(E2) values and the pairing 6 I'rom odd-cven
mass diITerences. In the analysis below we take «=0.95P
and obtain p from
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For ' ' Er and for pairs of identical-band nuclei
identified in Ref. [4] for which e and A can be obtained
with good accuracy, Fig. 1 shows F4(E„) values plotted
against F(s) and F(A). Although there are some regu-
larities in the F(s) plot, as might be expected, it is evi-
dent that neither plot gives a smooth characterization of
the behavior of rotational energies. However, the impor-
tance of the competition between deformation and pairing
suggests that a quantity embodying both e and 6 might
be a better parameter. This is in fact the case as is vivid-

ly demonstrated in the bottom right panel of Fig. I which
plots F(E„)values for the same nuclei against F(s/6).

Now the data suddenly collapse into a single, smooth
envelope. Even more noteworthy is the fact that this
curve smoothly joins onto the data for the identical
bands. Pairs of nuclei for which the fractional changes in
deformation and pairing are identical, giving F(e/A) =0,
show identical bands while, for other pairs, the fractional
difference in transition energies grows with changes in the
ratio of s to h. This suggests that identical bands are not
isolated occurrences that are somehow qualitatively dif-
ferent from rotational behavior elsewhere. There is no
"gap" in the plot: Rather, one can find pairs of nuclei,
with essentially any chosen fractional difference in transi-
tion energies [any F(E„)]. Identical bands are merely
the limiting case of a continuous gradation of band struc-
tures ranging from extremely dissimilar [F4(E„)+ 1] to
the identical bands themselves. We note that results
similar to Fig. I (and Fig. 2—see below) apply to other
FJ(E„) values in the range 1=6+-14+. It is also worth
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noting that the correlation with s/6 in Fig. I, as well as
the even better correlation with the P factor to be dis-
cussed below, is not simply a reAection that nuclei further
apart in N, Z, and 2 differ more than closer lying pairs.
Of course, globally, this is true, but Fig. 1(c) (lower left)
shows that F(E,) is not in fact well correlated with a
simple model dependence, 8, of the moment of inertia.
Indeed, as noted in Ref. [4] and seen in Fi . 1(c), nuclei
with identical bands can have large F(A ) values. In

passing, we also remark that Fig. 1(d) [or 2(a) below]
shows no obvious need to incorporate other deformed de-
grees of freedom such as s4 or y.

To see if these results are more general, we now inspect
a wider ensemble of nuclei. The top part of Fig. 2 shows

F4(E„) against F(s/5) for pairs of isotopes in the Dy, Er,
Yb, Hf, W, and Os chains and for identical band pairs of
nuclei. Although there is naturally more scatter with this
large group of nuclei, the data still show a clear correla-
tion with changes in s/A.

Figures 1 and 2, and the physical content of s/6, sug-
gest an even simpler and more revealing way of studying
this phenomenon. It has been shown [9] that the develop-
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FIG. 1. Plots of F4(E„) against F(s), F(A), F(As~'), and
F(s//A) for pairs of Er isotopes and for pairs of identical-band
nuclei (IB) discussed in Ref. [4j. Results are shown for nuclei
for which the uncertainties in s and A are ~7%. (Generally the
errors are much smaller than this maximum value. ) This elimi-
nates ' Hf and ' W since the errors in 6 are & 7% and ' Os
for which the 8(E2) value is not known. The data here and in
Fig. 2 are based on Refs. [6-8l.
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FIG. 2. Plots of F4(E„) against F(s//h) (top) and F(P) (bot-
tom) for pairs of isotopes of the elements Dy, Er, Yb, Hf, W,
and Os, and for pairs of identical-band nuclei (IB) identified in
Ref. [4], for which F(s/h) can be obtained. Note that, to show
a broader spectrum of nuclei, some h, values used in the upper
plot are based on masses estimated from systematics in Ref. [7].
This does not distort the trends as these points fall within the
same envelope as those involving only measured values.
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ment of collectivity and deformation in medium and
heavy nuclei is very smoothly parametrized by the P fac-
tor, defined as

P =NpN„/(Np+N„) (4)

in terms of the numbers of valence protons (N~) and neu-
trons (N„). P can be viewed as the ratio of the number
of valence p-n residual interactions to the number of
valence like-nucleon-pairing interactions or, if the p-n
and pairing interactions are orbit independent (a rough
but pedagogically useful approximation), then P is pro-
portional to the ratio of the integrated p-n interaction
strength to the integrated pairing interaction strength.
Observables such as E(4i+)/E(2i+) or B(E2;01+ 2t+)
that are associated with the mean field vary smoothly
with P. P is conceptually linked to a/5, and embodies, in

a simple formulation, a measure of the balance of com-
peting degrees of freedom that mimics the phenomeno-
logical behavior of nuclei. P also has a practical advan-
tage over s/d in that it is trivial to obtain for a given nu-

cleus simply by counting the number of valence nucleons
relative to the nearest shell or major subshell closure.

In Fig. 2 we show a plot of F4(E,) against P for the
same isotopic sequences and identical band nuclei as for
the F(c/t5) plot. The results show an even tighter en-
velope in which F4(E„) values for nuclei with unequal ro-
tational spacings lead asympotically into those for identi-
cal bands. Indeed, the fractional change in rotational en-

ergy spacings almost scales linearly with fractional
changes in P. Thus, both plots in Fig. 2, but especially
the F(P) plot, demonstrate, for this wider group of nuclei
as well, that identical bands are part of a continuous
range of phenomena and, moreover, that the controlling
factor is the interplay of p-n and pairing interactions.
This confirms and generalizes our previous conclusions.
The fact that the P plot is actually a better correlation
than s/5 has an appealing practical aspect since, empiri-
cally, P is available for more nuclei than e/h. Moreover,
since P is obtained simply by counting valence nucleons,
it is trivial to make predictions of FJ(E,) f'or unknown

nuclei. A final point worth mentioning is that we have
shown results here that compare identical-band nuclei
with isotopic sequences of other nuclei. Other "cuts,"
such as isotonic sequences, can also be studied. Interest-
ingly, the same conclusions are reaSrmed. A plot of
F(E„) vs F(P) is again a compact envelope leading
asymptotically to the identical-band nuclei at the origin.
Of course, the slopes will be diAerent from those in Fig. 2
since the evolution, or rate of change, of collectivity is not
isotropic in the A'-Z plane.

To summarize, the identical-band phenomenon has
been shown to be part of a smooth range of band struc-
tures, from virtually identical to widely diAerent. The
identical transition energies observed in pairs of even-

even nuclei, reflecting equal moments of inertia, do not
single out pairs of nuclei that are somehow set apart or
qualitatively diff'erent from others, but rather pairs that
represent the terminus of a range of degrees of diversity.
The critical physical concept controlling the diversity of
structures is the ratio of residual valence p-n to pairing
interactions. In pairs of nuclei w ith identical bands,
changes in one of these are balanced by changes in the
other. Both for nuclei with identical bands and for those
where the moments of inertia diAer, there is a clear corre-
lation, with few exceptions, between changes in rotational
spacings and changes in P. Interpretations of identical
bands in odd-mass even-mass pairs of nuclei have often
involved [10,11] arguments based on symmetry con-
siderations, such as pseudospin or supersymmetry, that
focus on the coupling of the odd nucleon to the even-even
core. The equal moments of inertia in even-even pairs
may also reflect an underlying symmetry and the present
results could then be interpreted in terms of a continuous
range of symmetry breaking. In any case, the appearance
of identical bands is thus not an isolated exception to the
normal behavior of nuclei. This in no way, however, di-
minishes their interest for they are now seen to manifest
the extreme limit of a phenomenology that reveals the
unity and continuity of collective rotational behavior in

heavy nuclei, and its relation to underlying residual in-
teractions.
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