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A treatment of Bose-Einstein condensation in a static spacetime with a possible spatial boundary is
given. An interpretation in terms of symmetry breaking to give a nonconstant scalar-field vacuum ex-
pectation value is provided. Applications to condensation in cavities in flat spacetime, and to curved

spacetime, are discussed.

PACS numbers: 11.30.Qc, 03.70.+k, 04.40.+c

Bose-Einstein condensation (BEC) has been of con-
tinuing interest to physicists since its original discovery in
nonrelativistic systems [1,2]. It provides at least a partial
understanding for the behavior of liquid helium at low
temperatures as suggested originally by London [3]. The
phenomenon of BEC in relativistic systems has also been
considered (see, for example, Refs. [4-6]). More recent-
ly BEC has been examined from the viewpoint of modern
quantum field theory at finite temperature and density
[7-11]. In particular, it was shown that a proper account
of antiparticles must be taken and, unlike the nonrela-
tivistic case, BEC can occur at high temperatures. The
other important aspect of the field-theory approach to
BEC is that the accumulation of particles in the ground
state may be understood as spontaneous symmetry break-
ing in the sense that the vacuum expectation value of the
scalar field becomes nonzero above a critical temperature
(8,91

The work referenced so far considers relativistic sys-
tems in flat spacetime with no boundaries present. The
case of flat spaces with boundaries was originally
motivated by a desire to understand the behavior of liquid
helium in thin films (see Refs. [12,13] for example).
Nonrelativistic systems in cubical cavities with a variety
of boundary conditions have been studied extensively by
Pathria and his co-workers. (This work, with original
references, is reviewed in [14].) Relativistic BEC in a
cavity has also been treated [15]. The generalization
from flat to curved space has been considered [16], begin-
ning with nonrelativistic bosons in the static Einstein
universe, in which the spatial section is a three-sphere.
The generalization to relativistic particles in the Einstein
universe was performed in Refs. [17,18], and for higher-
dimensional spheres in [19]. Some of these results will be
recovered as special cases of the results in the present pa-
per.

Our basic reason for dealing with cubic enclosures or
spheres is that the eigenvalues of the Laplacian are
known, and it is then possible by a variety of summation
techniques to obtain an exact result for the partition
function, or to evaluate it approximately in certain limit-
ing cases. For more general spaces, where the eigenval-
ues of the Laplacian may not be known explicitly, other
methods must be found to study BEC. The purpose of
the present paper is to study BEC in the fairly general

1152

setting of a static spacetime whose spatial section is an
arbitrary manifold with boundary. We will obtain a
high-temperature expansion of the effective action in this
situation and use it to study BEC. The technique we use
is based on that of Actor [20] in flat spacetime, and is
similar in spirit, although different in detail to that of
Refs. [21-23]. The results are in agreement with those of
Kirsten [24,25] who used the methods of Refs. [21-23] to
obtain the high-temperature expansion of the thermo-
dynamic potential. In addition, Kirsten [24] has looked
at BEC, but without the interpretation of symmetry
breaking in our paper. As we will discuss, this interpreta-
tion leads to results considerably different from previous
treatments. Calculational technicalities, and a variety of
applications to specific spacetimes, will be presented else-
where [26].

Consider a complex scalar field ®(x) defined on a
spacetime M =R XX, where X is a D-dimensional Rie-
mannian manifold, compact, possibly with a boundary.
Assume that M is static with line element

ds2=dt2—g,~j(x)dx"dxj. ()

The Lagrangian will be chosen to be
L="0)"(3,0) —md'o—Uyx)—U,(x)d'd, (2)

where Ugp(x) and U (x) are independent of the scalar
field, but may depend on the geometry of the spacetime.
[For example, U,(x) =R, where R is the scalar curva-
ture, is a common choice.] The scalar field is free in the
sense that it only interacts with the classical gravitational
background. As noted in Refs. [8,9], associated with Eq.
(2) is a conserved Noether current, as well as a conserved
charge Q, corresponding to infinitesimal gauge invari-
ance. The conserved charge is Q =i [sdo,(®'d—d'®),
where do, is the volume element on X, and & =98d/9r.
The grand partition function Z can be expressed as a
Hamiltonian path integral, with the conserved charge in-
corporated using a Lagrange multiplier 4. Finite temper-
ature may be dealt with by performing a Wick rotation to
imaginary time, and performing the path integral over all
fields periodic in imaginary time with period g=(kT) ™!
(see Refs. [8,9,27]1). Instead of the partition function, we
may compute the effective action I' using the back-
ground-field method [28]. After some calculation, we
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find [26]

r=p [ do % Vel § >+ U, —p2ed +T4 4T,
3)

where

—O+m U, — Pt 2

I+ =1 Indet [12 Yy

| o

The background field ®(x)=¢(x)/v2 is chosen to be
real, and to depend only on the coordinates on . / is a
constant with dimensions of length chosen to keep the ar-
gument of the logarithm in Eq. (4) dimensionless. If we
call '+ the contribution from particles, then I'— is the
contribution from antiparticles. The two contributions
are seen to arise naturally in the context of quantum field
theory.

In order to calculate Eq. (4) we will adopt Hawking’s
[29] definition of ¢-function regularization which involves
the eigenvalues of the differential operators in (4). Be-
cause of (1), O0=9%/9:2+V2, where V2 is the scalar La-
placian on X. If on denotes the eigenvalues of —V?
+U,(x) on X with the fields subject to the appropriate
boundary conditions, then the differential operators in
Eq. (4) have eigenvalues

An =Qrj/Bxiun)?+on+m?, (5)
where j=0,*1,%2,.... Generalized ¢ functions are
defined by

(e)= Y TOF) ©6)

j==='N

and we define
Fe=—1¢%(0)+ 2+ (0)n/2. ™

It is easy to see that ¢{—(s)=¢4(s), so that [y =I_.
[This is also obvious from Eq. (4) since t— —1 is a sym-
metry of the spacetime.] Because on is not explicitly
known, except in certain very special cases, it is not possi-
ble to evaluate {+(s) in closed form. However, it is pos-
sible to obtain an approximation valid at high tempera-
ture by a generalization of Actor’s [20] method from flat
to curved spacetime.
Define

2
1Bon ] : ®)

8(1)=;exp[— =

r
which is related to the integrated heat kernel for
—V2+U,. (The literature on the heat kernel is vast.
The first use in quantum field theory was by Schwinger
[30] and DeWitt [28].) It can be noted that high temper-
ature corresponds to B— 0. The behavior of 8(¢) is then

found to be related to 1— 0. As r— 0, 6(¢) has the
asymptotic expansion

52 -D/2 e k
o)=L~ L ©)
T k=01/2,1,... | 4m

where 6 are coefficients determined by the intrinsic and
extrinsic geometry of X, as well as by the boundary condi-
tions. The result in Eq. (9) allows the high-temperature
limit of the generalized { function to be obtained. We
will give the results only for the case D =3, corresponding
to a four-dimensional spacetime (other cases and full
technical details will be found in Ref. [26]). For D=3,
we find

2 3)
-3 Cr -2
r == - 0
+ r 90ﬁ 0 4”3/2ﬂ 1/2
— 2 B0+ Qui—m?l+ - -+ (10)

if only the dominant terms at high temperature are kept.
Terms of order Ing and those which vanish as f— 0 may
be easily obtained if needed. The flat-spacetime result
agrees with Ref. [8]; the curved-spacetime result agrees
with Refs. [24,25].

It is important to clarify in what sense we mean that
the temperature is high. In flat spacetime, 7> m is as-
sumed. In curved spacetime, in addition to 7> m, we re-
quire 7>> |R| ', where |R| is the magnitude of a typical
curvature of the spacetime. If this last approximation is
not made, then a term of zeroth order in 7, such as R,
could be of the same or of greater order than T'2. The ex-
pansion in Eq. (10) would not be consistent in this case.
It would appear difficult to remove this restriction for
general spacetimes (see Ref. [18] for the special case of
the Einstein static universe).

The vacuum, or ground, state is the value of ¢(x)
which minimizes the effective action. From Eq. (3), the
stationary point is the solution to

—Vip+(m?+U,—u?)e=0, an

subject to the appropriate boundary conditions. Let
{on (x)} be a complete set of solutions to

[V + U, (x)]e(x) =opne(x) , (12)

dexcpN(x)<pN'(x)=6NN'. (13)

It should be noted that uzs oo+m? is assumed here in
order that the effective action does not involve negative
eigenvalues. We may expand ¢(x) in Eq. (11) as

<P(x)=§,c/v¢;v(x), (14)

for some expansion coefficients Cy. From Eq. (11), using
the linear independence of the ¢y (x), it follows that
Cnlony+m?—pu?)=0. (15)

If u? < oog+m?, where oy is the smallest eigenvalue, then
the only solution to (15) is for Cy =0. This corresponds
to #(x) =0, which represents the unbroken symmetry
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phase. If u?=0o+m?, then Cy is not determined by (15);
however, Cy =0 for all N#0. Thus, in this case, we can
have a nonzero solution ¢{(x) =Cgyeo(x) which represents
symmetry breaking.

In order to see how symmetry breaking is possible, con-
sider the expectation value of the charge operator Q
which is given in terms of the effective action by

1 or
o=—-—2_. (16)
B ou
Using the high-temperature expansion (10) in (3) leads
to

0=00t+0,, (17)
where

Qo=ufdcx@2(x), (18)

Q\=1+uvr?. (19)

(We have used the result 8=V, where V is the volume of
%. This holds irrespective of the boundary conditions on
the fields [31-341.) If T is high enough, it is always pos-
sible to have ¢(x) =0 and satisfy

Q=tuvT?, (20)

where u’<og+m?2 This is the unbroken phase. We
can interpret Qg as the charge associated with particles in
the ground state, and Q, as the charge associated with
particles in excited states. As T decreases, since the total
charge is fixed, u must increase until we reach the tem-
perature at which

ul=oo+m?. QD

The temperature at which (21) holds defines the critical
temperature T.. As discussed in the previous paragraph,
this allows a nonzero ground state, and by (18) an accu-
mulation of charge in the ground state. From (20) and
(21), the critical temperature is given by

T.=30/V)"*(co+m?) ~"*. (22)
For T < T, it is easily seen that
00=001 —(T/T)?], (23)

which is identical to the result in flat spacetime [8]. This
result therefore has a universal character, irrespective of
the spacetime. (Of course the critical temperature is not
simply given by the flat-spacetime result in general.) Us-
ing ¢(x) =Coeo(x) in (18), and solving for Co using (23)
gives the broken symmetric ground state

e(x) =+ VATE=T?) py(x) (24)

for T<T,. One significant difference with the flat-
spacetime result is that the charge density in the ground
state will not be constant if 7' < T,, but will have a spa-
tial variation determined by the behavior of ¢o(x).
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As the first illustration of the general results, consider
a scalar field confined to a rectangular cavity of sides
Ly,Ly,L3y with Dirichlet boundary conditions (¢y =0 on
the walls of the cavity). With U, =0, it is easy to show
that the eigenfunction

1/2
X X X
wolx) = %] sin T sin L sm[ L: (25)
has the lowest eigenvalue of
S N I (26)
L L3 L}

The expectation value of the scalar field is forbidden to be
constant (apart from zero) by the boundary conditions.
The critical temperature follows using (26) in (22). A
similar result holds for the three-torus where the field
satisfies antiperiodic boundary conditions. In either case,
because the exact eigenvalues are explicitly known, and
are so simple, it is possible to evaluate the generalized ¢
function explicitly.

A simple example where it is possible to obtain the ei-
genvalues and eigenfunctions, but not to calculate the
¢ function explicitly is a scalar field confined to the in-
side of a spherical cavity of radius a with Dirichlet
boundary conditions. The exact eigenvalues are o,
=(z;412n)*/a?, where z,, denotes the nth positive zero
of the Bessel function of order v. The lowest eigenfunc-
tion 1s

0o(x)=Qra) """ ~sin(xr/a) , (27)

with op=n%/a? the lowest eigenvalue. If von Neumann
boundary conditions are imposed (8¢/dr =0 at r=a),
then oo=xg3/a’, where x0==4.4934 is the smallest
nonzero positive solution to tanx =x.

Finally, we look at the Einstein static universe with
U, =ER=6&a %, where a is the radius of the three-
sphere. The lowest eigenvalue of —V? is 0, correspond-
ing to a constant eigenfunction. Thus, op=6&a 2 The
minimally coupled case (£ =0) therefore leads to a criti-
cal temperature identical to that in flat spacetime in
agreement with Ref. [18]. The conformally coupled case
(E=%) gives a critical temperature of T.=(3Q/V)'?
x(m24+a =) 7" in agreement with Ref. [15]. In either
case, if T <T,, the symmetry breaks to a constant solu-
tion given by (24) with o=V ~'2 as in flat spacetime.
Instead of taking X to be the three-sphere, if we choose
instead the three-sphere with antipodal points identified,
then £=P3(R) is the projective three-sphere. Imposing
periodic boundary conditions at antipodal points leads to
a critical temperature identical to that in the Einstein
static universe. If, however, an antiperiodic bound-
ary condition is imposed, then o=V " is no longer
an allowed solution. Parametrizing P3(R) by angles
0=<6,x,0 <nm, we have po=2V""! zcosx and oo=(6&

+3)a ~2. Even for the minimally coupled field the result
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for the critical temperature changes from its flat-
spacetime form, unlike that in the Einstein universe.

The effects of field interactions have not been con-
sidered in this paper. In flat Minkowski spacetime they
may alter considerably the free-field results [10,11]. For
the spacetimes considered in this paper, where the vacu-
um expectation value of the field is not constant, this
means that the effective potential may not be used and
the analysis of interactions is much more complicated
than for Minkowski spacetime. This problem is currently
under investigation. Another point which should be men-
tioned concerns the application to cosmology. Because
we have restricted our attention to static spacetimes, no
direct conclusions can be drawn from this paper; however,
it should be possible to generalize the method presented
here to deal with dynamic spacetimes. Some possible
cosmological consequences are discussed in Refs. [10,
11,18].
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