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Core-Hole Migration and Relaxation Effect in Alkali Halide Excited by Synchrotron Radiation
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Photoluminescence due to radiative transitions between the valence and outermost core bands, in

which the Auger process is energetically forbidden, is studied in mixed Rbl-„Cs„Fcrystals. The results

provide clear evidence that a hole created in the Rb+ 4p core band migrates through the crystal, and is

trapped at the Cs+ 5p core state. The diffusion coefficient of the core holes is estimated to be 1.5x10
cm2/s. Furthermore, a comparison with photoelectron data reveals an important role of relaxation
effects in the deexcitation process of core holes.

PACS numbers: 78.55.Fv, 78.70.En

A conduction electron and a valence hole can move

about freely through the volume of a condensed matter.

This fact is one of the most important points in solid state

physics [1]. On the other hand, when a hole is created in

a deep-lying core state, its transport properties have been

studied very little. In general, it has been believed that a

core hole is not free to move through the crystal. One

reason for this is that the core band is narrow or disper-

sionless, leading to very large effective mass. The other

reason is that the core-hole lifetime is very short due to

fast Auger decay processes in which the core hole com-

bines with an upper electron by kicking up another elec-

tron into an empty state.
The present Letter reports the first finding of the mi-

gration of core holes, in which we measured a specific

kind of core luminescence, recently found by several

groups [2,3], of mixed Rb|-„Cs,F crystals. Figure I

shows a schematic energy diagram of this system. The

conduction band originates from the s and d states of the
Rb+ or Cs+ ions, and the valence band from the 2p state

of the F ions. Below the valence band, there exist two

outermost core bands; one is due to the Cs+ Sp state and

the other to the Rb+ 4p state. The former is located 2-3
eV above the latter. In usual cases, the band-gap energy

E~ is smaller than the energy diAerence Ez& between the

tops of the valence band and the outermost core band.

Thus the nonradiative Auger process is predominant for

the core-hole decay. However, the reverse relation Eg) Epr is satisfied in both RbF and CsF crystals [3], so

that the core hole created in the Cs+ Sp or Rb+ 4p state

is free of the Auger process and combines radiatively with

a valence electron. The resulting luminescence has been

called "Auger-free (AF) luminescence" [4]. In the

present work, we confirm the migration of core holes

from Rb+ to Cs+ ions by monitoring host-sensitized AF
luminescence. Furthermore, in order to explain a low-

energy tail of the AF luminescence band of RbF, partial

relaxations of the outermost core hole and/or the valence

electron are introduced. These results must be important
in studying fast Auger decay processes, such as an

impact-stimulated desorption of atoms or ions from a sur-

face [51, and possibly in developing scintillation detectors
for high-energy physics.

We used synchrotron radiation from the electron
storage ring UUSOR at the Institute for Molecular Sci-
ence (IMS) in Okazaki as a light source. The ultraviolet

light was monochromatized with a 1-m Seya-Namioka-

type monochromator. Crystal ingots of Rbl — Cs„Fwere

prepared from the melt in a platinum crucible. Actual Cs
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FIG. 1. Schematic energy diagram sho~ing the deexcitation
processes of outermost core holes in the mixed Rbl —„CsF sys-
tem. The radiative transition is indicated by solid arrows, while

the migration and trapping are indicated by dashed arrows.
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transition energy from the Cs+ 5p level to the conduction
band [7]. The excitation spectra obtained in the x =0.52
sample showed the same threshold as those of Fig. 3(b).

The decay behaviors of the luminescence bands in RbF
are depicted in Fig. 4. These three bands exhibit a slight-

ly nonexponential decay, so that we define the lifetime r
as a characteristic time at which the initial intensity de-
creases to 1/e value. The 3.2-eV band has a lifetime of
r =2.6+ 0.2 ns, which agrees well with that of the AF
luminescence in CsF (not shown). The 5.4-eV band, on

the other hand, exhibits the same decay profile as the
4.3-eV band; z =1.4+ 0.2 ns. The present values of r
are fairly consistent with the previous data [8].

From the results described above, we understand that
the introduction of even small amounts of Cs+ ions into
RbF gives rise to a band at 3.2 eV coinciding with the AF
luminescence band of pure CsF [9]. It should be stressed
that the guest 3.2-eV band does not appear under the
Cs+ 5p core-level excitation but does under the Rb+ 4p
core-level excitation, as seen in Fig. 3(a). At first sight,
this fact may be somewhat strange in view of our usual

experience, in which an impurity-associated luminescence
is selectively excited with photons below the intrinsic
absorption band due to host crystals. However, in the
present case, almost all of the incident photons are ab-
sorbed by the host RbF crystal, not by Cs+ impurities,
because of the large absorption coefficient of RbF in the
core-excitation region. We can, therefore, conclude that

log I

7 =

the core hole created in the Rb+ 4p band moves through
the crystal, and is trapped at the Cs+ 5p state during its
lifetime [10], to emit the host-sensitized AF lumines-
cence.

In order to analyze the migration of core holes, we

adopt the diffusion model [11] for the system of
Rb| —,Cs F. In this case, the total decay rate of a core
hole, 1/r, may be represented as a sum of the radiative
decay rate at Rb+ sites, I/ro, and the energy-transfer
rate to Cs+ sites via core-hole diffusion, 4zDRn;

1 +4zDRn,
7p

where D is the diffusion coefficient, R is the capture ra-
dius of a Cs+ for a core hole, and n is the number of Cs+
ions per unit volume. We neglect here nonradiative
recombination channels. In the x =0.008 sample, the
guest 3.2-eV band is comparable in intensity with the
host 5.4-eV band, which means I/ro=4zDRn if the
quantum efficiency is assumed to be the same for both
bands. We thus obtain D =1.5x10 cm /s by using the
values of ra=i. 4&&10 s, R =1.9x10 cm [12], and
n =1.8 x 10 cm . From this, the diffusion length of a
core hole is estimated as I =(Duo) 'i =15 A. That is to
say, the core hole is likely to diffuse at random on a few
tens of lattice sites in RbF crystals.

From Eq. (1) it is expected that the lifetime r of the
host luminescence becomes shorter with increasing n.
This is indeed the case, as shown in Fig. 5. Strictly
speaking, the value of r of the 5.4-eV luminescence de-
creases from 1.4 ns (x =0.0008) to 1.0 ns (x =0.008),
which is close to but larger than the expected one
(=1.4x —,

' =0.7 ns). Such a deviation from the expected
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FIG. 4. Decay profiles of the 3.2-, 4.3-, and 5.4-eV bands in

RbF (x =0.0008) obtained at 295 K under the single-bunch
operation of synchrotron radiation at 21.0 eV. The emission in-

tensity is plotted in a logarithmic scale vs time.
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FIG. 5. Concentration-dependent changes of the decay
profile of the 5.4-eV band in Rbl —„CsF crystals (x =0.0008
and 0.008). Both curves are normalized at I =0.
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value may indicate a contribution of "hot" holes; i.e. , the
holes transfer their energies to Cs+ ions during the
thermal relaxation within the Rb+ core band.

Let us discuss the origin of the 4.3-eV band observed in

RbF [Fig. 2(a)]. The 4.3-eV band, which is induced by
the core-band excitation above 17.0 eV, has the same life-
time as the 5.4-eV band. The sameness implies that the
4.3-eV band is also linked to AF luminescence of RbF.
The energy of emitted photon, hv, due to AF lumines-

cence is expected as Eqp —AEy ~ h v ~ Eyi from Fig. 1

[4]. Here, t5Ey is the valence-band width. With use of
the band parameters, Eqi- and h, Eq, which are deter-
mined from the photoelectron spectroscopy [13,14], we

have hv=5. 2-6.8 eV for RbF and 2.6-4.3 eV for CsF.
The agreement between measured and calculated values

may be satisfactory in CsF [15]. However, the 4.3-eV
band in RbF is located approximately 1.0 eV below the
calculated minimum. Such an unexpected low-energy
tail of the AF luminescence band has also been observed
in BaFq [16].

In halide crystals it is well known [17] that a hole

created in the valence band is self-trapped spontaneously
because of the strong coupling with lattice vibrations. In

the Auger-free case, the core-hole lifetime is governed by
radiative recombination with a valence electron, and is

much longer (-10 s) than the lattice relaxation time

(typically —10 s). Thus a long-lived core hole is also
supposed to relax into the self-trapped state [18], from
which the low-energy tail luminescence is emitted. If
there exists a potential barrier separating the free and
self-trapped states, it will be possible to observe the main
and low-energy bands simultaneously.

On the other hand, in the eAorts to understand a low-

energy tail of the soft-x-ray emission band of metals
[19,20], the multielectron effect has been shown to be of
primary importance. According to this model, when a

hole is produced in the core band, it pulls down the
valence-electron distribution in its immediate vicinity. As
a result, the core hole is filled by an electron having a

perturbed wave function, which gives rise to a low-energy
tailing of the luminescence band. Further studies both in

theory and experiment are required to determine which

mechanism is important in the deexcitation process of
outermost core holes.
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