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Kondo Eff'ect in Disordered Systems
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We consider a system of dilute magnetic impurities placed in a disordered metal, and examine the

modifications of the Kondo temperature T~ due to the presence of disorder. Our calculations, based on
a slave-boson approach, show that the probability distribution P(Ttt) for Kondo temperatures can be re-
lated to the local-density-of-states fluctuations induced by localization effects. The resulting P(Ttt) is

shown to be su5ciently singular to induce diverging magnetic susceptibility g as T 0, a non-Fermi-
liquid behavior.

PACS numbers: 75.20.Hr, 71.55.3v

From a general point of view, there are several reasons theory to examine the Kondo effect in weakly disordered
why the disordered Kondo problem can be expected to be systems. They found that the perturbation expansion was
of central importance to the physics of dirty metals. Ex- singular, and that the singularity was related to the mo-

perimentally, several classes of disordered metals have re- ments of the local density of states. In our study, we will

cently been found that display unusual non-Fermi-liquid be particularly concerned with trying to identify possible
features. In all these examples, ranging from doped universal mechanisms for Ttt degradation. In this spirit,
semiconductors [1] to Kondo alloys [2] to high-T, ma- we will ignore the disorder-induced modification of the
terials [3], local magnetic moments and disorder are Kondo coupling J which is a local quantity, expected to
simultaneously present. The resulting g and y are found be sensitive to the microscopic details of disorder, and
to increase as the temperature is lowered, and no satura- thus strongly system dependent. This is the type of Ttt
tion is observed down to the lowest available tempera- degradation eff'ect considered by Bhatt and Fisher [5].
tures. The Kondo temperature Ttt, representing a cross- By now, it is recognized that the low-temperature be-
over temperature to a Fermi-liquid behavior, thus appears havior of a Kondo spin is correctly described by the
to be considerably depressed, possibly even made to van- slave-boson mean-field-theory method [71. In this tech-
ish. nique, the spin- —, operator S is written in terms of fer-

In the context of metal-insulator transitions (MITs) mion operatorsgst andy, (s=t, f) as S= 2 g, , @to„g,,
[4], the Kondo problem is of considerable importance. In with the additional constraint nz=g, gtg, =1. Using a
particular, at T & Tq, spin-Aip scattering plays an imp«- functional integral representation, this constraint is en-
tant role, as it introduces a cutoff in the triplet (spin- forced by introducing a Lagrange multiplier field A, (z),
diffusion) channel, and thus modifies the overall symme- and the Kondo interaction is decoupled by introducing an
try, i.e., the universality class of the localization problem auxiliary field s(z ). A mean-field solution (which is for-
[4]. On the other hand, for 0 & T & T~, Kondo screening mally exact in the large-N formulation of the problem) is
eff'ectively eliminates the local moment, and the spin- then obtained by finding the saddle-point of the action in
diffusion channel remains "massless, " and contributes to terms of the fields A, and s. The trivial saddle point (s =0,
localization. Therefore, not only the thermodynamics b«A, =0) is always present, but it becomes unstable at
also the transport properties near the MIT can be expect- T=Tg, and a nontrivial solution appears, which corre-
ed to be very sensitive to possible modifications of Tz in sponds to singlet binding of the local moment and a con-
the presence of disorder. duction electron.

In this Letter we address the question of how Ttt wiii This phase transition, which happens at T=Ttc in
be modified by disorder by examining the single-impurity mean field theory, is washed out by fluctuations and turns
Kondo problem in the presence of a random distribution into a smooth crossover, as established by more accurate
of nonmagnetic impurities. This problem has been pre»- RG computations [8]. Nevertheless, a mean-field calcu-
ously addressed. Bhatt and Fisher [5] recently used lation of Ttt correctly predicts the temperature scale of
Lifshitz-type reasoning to argue that there is a dis«ibu- this crossover, which at the same time represents the
tion of Kondo temperatures in a disordered system and characteristic energy scale of the ground state.
that some of the local moments will not b Kondo In order to determine the T~ in the presence of disor-
screened even at the lowest temperatures. In earlier der, we follow this procedure and examine the stability of
work, Okhawa, Fukuyama, Yosida [6] and Suga, Kasai, the trivial solution. In the static approximation (mean-
and Okiji [6] have used a high-temperature perturbation field theory), the fields are replaced by their saddle-point

t values so and —ice, and the action takes the form [7]

S=g J dz J dr tir, (r, z) —p ——V + V(r) y, (r, z)+S;„,+g g~ dzg, (z) +co —p g, (z) —2Peo
1 tP

S 9s S ar
pp

+sop„i dz [y, (R, z)g, (z)+g, (z) tlt, (R, z)]+ so,
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where p is the chemical potential, P is the inverse temper-
ature, V(r) is the random potential, and S;„, represent
the interactions among the band electrons.

The free energy of the system F = —T ln f
DEED@

xexp[ —SI can be expanded in powers of the elfective
hybridization parameter so. The Kondo temperature is

obtained by identifying the emergence of the nontrivial

(spAO) solution of the saddle-point equation 8F/Bsp =0.
This occurs when the coefficient of so vanishes. Using the
definitions of free local moment and the band electron
Green's functions, the implicit equation for Tg can be
written as

f& + oo
1

ds nF(—s)p(R, s) = ——, (2)—oo J
where nF(s) = [I +exp[(s —p)/T]] ' is the Fermi func-
tion, and p(R, s) is the single-particle density of states
(DOS) of the conduction electrons.

In deriving this result, we have considered interacting
band electrons in the presence of a fixed realization of the
random potential V(r). Thus p(R, s) is a fully renormal
ized single-particle DOS of disordered interacting elec-
trons evaluated for a given realization of the randomness.
Note that p(R, e) is also a loca/ DOS, and is consequent-
ly expected to be much more sensitive to disorder than its
global counterpart ps~(s) =(I/O) fdRp(R, s). Indeed,
while ps~(s) is self-averaging [9] in the thermodynamic
limit 0 ~, the local DOS remains random since it ac-
tually measures the position-dependent electronic density,
i.e. , the wave-function amplitude fluctuations, viz.

p(R, s) —
i y, (R) i'.

In order to relate our results to the measurable quanti-
ties, an appropriate averaging over disorder (or equiva-
lently over the positions of the Kondo spins) has to be
performed. The simplest procedure would replace the lo-
cal DOS p(R, s) by its average value which, at least for
noninter acting electrons, would predict Tq- to be
unaffected by disorder. However, this approach is in-

correct since, for sufficiently wide probability distribu-
tions, the typical behavior is largely unrelated to the
average value which can be dominated by rare, statisti-
cally insignificant events. We will argue that this is pre-
cisely what is happening in our case, and the knowledge
of the full probability distribution is necessary to correct-
ly predict the experimentally measurable properties of the
system.

The qualitative features of the probability distribution
P(p) (p stands for the local DOS) are easily obtained
from the following simple physical picture. At weak dis-
order we expect small fluctuations, and the distribution is

peaked around p=po. In the opposite limit, in the insula-
tor, we have localized (bound) states, and the spectrum
consists of sharp, 6-function peaks. As the M IT is

crossed, these peaks broaden by an amount which mea-
sures the tunneling between what at lower energy were

)

the localized states. In the vicinity of the MIT, we thus
expect P(p) to have large weight at small values of p, and
a long, but small-amplitude tail at p large.

These qualitative considerations are very nicely born
out by detailed microscopic calculations based on a field-
theoretical nonlinear o.-model approach, which deter-
mined all the cumulants of the local DOS in a one-loop
RG calculation [10,11]. For weak disorder, the distribu-
tion was found to be a narrow Gaussian, but with long
log-normal tails which nevertheless carry only a small rel-
ative weight. For sufficiently strong disorder, i.e., sufh-
ciently close to the MIT, the ~hole distribution becomes
log-normal,

(3)
1 1 1P(p) = —exp~ — ln ~e"

4n„P 4u Po

The result is valid in the region u ~ 1, where the parame-
ter u is defined by u =fl'iL(dk/k)/g(X). Here, g(X) is
the scale-dependent dimensionless conductance, l the
momentum rescaling factor, i the mean free path, and L
the Thouless length [4] (i.e., the elfective size of the sys-
tem). As the MIT is approached, u ~, and most of
the weight of P(p) shifts to small p values, near the peak
at ptyp poe ", rather than near the average value p =po,
which is not modified. Equation (3) has been obtained
for noninteracting electrons, and is valid both in the pres-
ence and in the absence of time-reversal symmetry (or-
thogonal versus unitary ensemble). When the interac-
tions are added, to one-loop order no further corrections
are found [12] for any local DOS cumulants, except for
the lowest one p, which is reduced as mentioned above.
Thus, to one-loop order, we can again use Eq. (2), by
simply replacing po with its interaction-renormalized
value. We stress, however, that all our results are the
consequences of the qualitative features of P(p) as dis-
cussed in the previous paragraph. The log-normal form is

useful for obtaining simple analytical expressions.
From the knowledge of P(p), we can now obtain the

desired probability distribution of Kondo temperatures.
In a given sample, p(R, s) will be a random function not

only of position R but also of energy e. Since the integra-
tion in Eq. (2) is carried out over energies, this could
reduce the fluctuations. However, the integral in question
gets its dominant contribution from an energy interval of
order he-Tq near the Fermi surface. The low-tem-
perature properties of the system, such as g and y, will be
dominated by precisely those Kondo sites with very low

T~. Using the fact that T~ is exponentially small in p, it
is not hard to see [13] that at low temperatures, to lead-
ing order, the energy dependence of the DOS can be ig-
nored. We thus replace p(R, s)- p(R, O) =p(R), the
DOS at the Fermi surface 4 is everywhere measured
with respect to the Fermi energy sF =p), and get
Tx(R) =sFexpj —1/p(R)J]. Furthermore, from P(Tx)
=(dp/dT~)P(p(T~) ), we find

P(T~) = (4xu ) 'i"' exp
Tg In(sF/Tg)
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Equation (4) is the central result of this Letter. The first

thing that we note about this distribution is that P(Ttr)
diverges at T~ 0, so we have a large number of spins
with very low Kondo temperature. We can be more
specific, and calculate the low-temperature form of g and

y. For a given spin at site R, its contribution to both g
and y is —1/T for Tir(R) & T, and so the dominant con-
tribution at low T comes from the same sites. Thus we

can write g-(I/T)nt, (T) (and similarly for y), where

we have defined an effective number of free spins by

nt, (T) =So dTtrP(Ttr). Introducing the quantity x,„
= —(I/v 4u )In[poJe "ln(eF/T)], we can rewrite this as

t x,„(T)
nt, (T) = „dxe

= —,
' j 1 +erf[,„(T)]] .

At low temperatures nt, (T)—T' r, with a(T) 0 as
T 0, i.e., it vanishes, but slower than any power. We
conclude that g and y diverge as T 0—a strongly non-

Fermi-liquid behavior.
It is interesting to estimate the size of this anomaly for

some typical values of the parameters. By using a Fermi

energy of eF -10 K, a bare Kondo temperature of
Ttor-10 K, and working in the strongly disordered (but
still metallic) region u —1, we obtain nt, (T)—(40-60)%
at temperatures T-10 -1 K. We note the extremely
slow temperature dependence, resulting from the InlnT
dependence of x,„(T).

We thus find a strikingly large fraction, of the order of
50'%%uo of pseudo-free spins at temperatures by orders of
magnitude lower than the bare Kondo temperature Tg.
Our results are valid only in the region u) 1, i.e., in the
strongly disordered region. For weak disorder, P(p) still

has the long, log-normal tails leading to the divergence of
g and y. However, the size of this effect is expected to be
extremely small, so for weak disorder the anomalies be-
come important only at physically unattainable tempera-
tures. In fact, for finite systems and weak disorder, there
will exist a minimum Kondo temperature Ttr, of the or-
der of the Tg below which Fermi-liquid behavior will

occur. On the other hand, the region of strong disorder
u ~ 1, where our results apply, is not restricted to the
infinitesimal vicinity of the MIT; for example, in the or-
thogonal case, u =in(oo/cr), and so u —1 corresponds to
the conductivity being —60Vo of its bare value oo. Thus,
our effect is expected to be observable in sufficiently dirty,
but still metallic samples.

The interaction corrections enhance the anomalies even

further, by reducing p. As the MIT is approached, p van-
ishes [4] as a power law p —poe

" (u ~ at the MIT),
characterized by an exponent 8—1. If these interaction
corrections are incorporated, only a small quantitative
change (increase) is obtained as compared to the nonin-
teracting case.

It is interesting to examine also the critical behavior of
nt, (T) as the MIT is approached. To examine this, let us

vary the parameter u (disorder) and fix T . Since
x~,„(T)—~ tu at u&&1, we conclude that nfl(T) 1

as u . Of course, the M IT is a zero-temperature
transition, so u only as T 0. To examine the true
T 0 limit, we imagine that we are exactly at the MIT,
but at finite temperature T. In this case, e " vanishes as
a power of the temperature. Using this form in Eq. (5),
and letting T 0, we confirm that nr, (T) 1 at the
MIT. We thus conclude that all the Kondo spins become
effectively free as the MIT is approached.

So far we have examined the effect of disordered con-
duction electrons on the local inoments. Another impor-
tant question concerns the feedback effect of these local
moments on the transport properties of the conduction
electrons. In particular the moments with Ttr(R) & T
will contribute to spin-flip scattering and will thus induce
a "mass" (cutoff') in the spin-diff'usion (triplet) channel
[4]. The simplest estimate of this effect would give the
corresponding scattering time I/r, -nr, (T), which, at
strong disorder, is a large fraction of the spins, yielding
strong spin-flip scattering near the MIT, even at low tem-
peratures.

Such an estimate, however, ignores the fact that those
very sites with Ttr(R) low correspond to having also low

p(R) —~y(R) ~, i.e., low conduction electron density, an
effect that would reduce the spin-flip scattering. To be
slightly more specific, at the level of the Born approxima-
tion (for local-moment-electron scattering), the scatter-
ing rate for a given site is proportional to the local DOS
p(R). By adding the contribution from all the sites with

Ttr & T, taking into account the DOS dependence leads
us to define an effective number (fraction) of spins that
induce spin-flip scattering of the band electrons by n„(T)
=(1/po)fo dTtrp(Ttr)P(Tg). The integral can be evalu-
ated as before, and we find n„(T)=

2 jl+erf[xm»(T)
—tu]].

It is particularly interesting to examine the behavior of
n„(T) as the MIT is approached. Since xm«= 2 tu
at u )) 1, the argument of the error function is

= —
2 tu —~ as u +~. Thus we find that

n„(T)~0 at the MIT. The local moments seem to
decouple from the conduction electrons, as in the phe-

nomenological "two-fluid model" of Si:P of Paalanen et
al. [14]. More specifically, by using an asymptotic ex-

pansion of the error function, we find that the triplet
"mass" M, —I/r, vanishes as a power of the distance
from the critical point. The validity of our estimate of
I/z, should be confirmed by more detailed calculations.
More importantly, our simple calculations indicate a new
scenario for the MIT: The mass (cutoff) M, which acts
as a symmetry-breaking field vanishes as the M IT is ap-
proached. This may modify the critical behavior of the
conductivity.

In summary, in this paper, we have examined the be-
havior of magnetic impurities in disordered electronic sys-
tems. The modifications of the Kondo temperature were
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evaluated as a result of localization and interaction
eflects. Our calculations show that the probability distri-
bution for Kondo temperatures is so singular that it can
induce divergences for both the linear specific heat
y=c/T and the magnetic susceptibility g as T 0, even

inside the metallic phase. Such non-Fermi-liquid behav-
ior is not present in the absence of randomness and re-
sults directly from disorder-induced fluctuations of the
electronic system. Since the localization and interaction
eA'ects that we have considered describe the long-
wavelength (hydrodynamic) []uctuations, we expect them
to be the dominant mechanisms in the vicinity of the
M IT.

In this study several potentially important aspects of
dirty metals have been omitted. We have assumed the
existence of local moments in the metal. There is some
evidence that disorder itself can play an important role in

their formation [15]. Second, we have not examined the
eA'ects of the interactions of local moments. In the pres-
ence of short-ranged interactions, based on the results of
Bhatt and Lee [l6], we expect the power-law singularities
of g and y to persist, although the exponents could be
modified. Bhatt and Fisher [5] have given arguments
suggesting that the long-ranged RKKY interactions could
change the power-law singularity discussed here to a
weaker logarithmic singularity. However, even if these
arguments are correct, the importance of the RKKY in-

teractions will be diminished as the MIT is approached,
since their long-range nature stems directly from the elec-
tronic wave functions being extended in the metallic
phase [17].

In any case, finding a universal mechanism for Tz de-
gradation although perhaps not sufficient is certainly a
necessary requirement for any general theory that at-
tempts to explain the non-Fermi-liquid features observed
in a number of dirty metals.
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