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Linear elasticity theory of the vortex lattice in anisotropic and layered superconductors has a much

wider range of applicability than in isotropic superconductors. This finding is used to calculate
the energy barrier for thermally activated depinning of vortices from columnar pins along the c
axis. The activation energy of these most effective line pins is strongly reduced by anisotropy. For
very large anisotropy as in Bi2Sr2CaCup08, the length of the depinning vortex segment formally

becomes shorter than the layer spacing; this means that the pancake vortices in the CuO layers

depin individually.

PACS numbers: 74.60.Ec, 74.60.Jg

The linear theory of elasticity of the lattice of
Abrikosov vortices in type-II superconductors has proven
highly useful for calculations of, e.g. , vortex pinning at
temperature T = 0 (collective pinning [1]) and at T ) 0
(collective creep [2]) and of thermal fiuctuations of the
vortex lattice [3—5]. This is so since the direct calculation
of the energy of a distorted vortex lattice from Ginzburg-
Landau (GL) theory or from the anisotropic London the-
ory or Lawrence-Doniach (LD) theory [6], more appro-
priate for high-T, superconductors (HTSC), would be a
formidable task. In general, the condition for linear elas-
ticity to apply is that the strains (i.e. , the gradients of
the vortex displacements) are small compared to unity.
For example, the vortex spacing aa should vary little,
bao/ap « 1, and the tilt angle 8 away from the equilib-
rium vortex direction should be small, i8~ (& 1; otherwise
the energy is no longer quadratic in baa or 8.

Surprisingly and much welcome, in anisotropic and lay-
ered superconductors with magnetic field B along the
crystalline c axis, linear elasticity has a much larger range
of validity. For example, the elastic energy U&,~q of a vor-
tex tilted by an angle 8 away from 8 ~~c~~z is proportional
to (tan8) as long as ~tan8~ (& I', this proportional-
ity holds approximately even when

~

tan8] = I'. Here
I' = A, /A b = ( &/(, = (M/rn) I is the anisotropy ra-
tio, I' —5 for YBazCusOr (YBCO), and I' = 60 for
BizSrzCaCu20s (BSCCO); A„A,b are the penetration
depths for currents along c and in the a-6 plane, respec-
tively, and ( b, (, are the coherence lengths. Introducing
displacements s(z) = [x(z); y(z); 0] from the equilibrium
vortex position (0; 0; z), one has [tan 8~ = ~ds/dz~ and
thus Uq;~q oc (ds/dz)z for ~ds/dz~ ( I'. This surprising
result applies both to isolated vortices and to the vortex
lattice.

In this Letter I will demonstrate this simplifying fact
and use it to calculate the activation energy required to
depin a vortex trapped by a columnar pin. It turns out
that (a) when driven by a current the vortex forms a
parabola rather than a circle (which would follow for

isotropic line tension); (b) at small currents the depinning
nucleus is a steep-sided triangle or trapezoid; (c) the de-

pinning barrier becomes very small for large anisotropy;
and (d) without a current a vortex along c does not ex-
hibit helical instability.

The elastic energy of the vortex lattice was derived
from isotropic GL theory in [7], from microscopic BCS
theory in [1], from anisotropic GL theory in [4], and
from anisotropic London theory in [8—10]. As a fortu-
nate fact it turns out that the LD theory for layered
superconductors yields essentially the same linear elas-
tic energy as the GL and London theories. This is so
since the nonlinear term depending on the (gauge invari-

ant) phases P„(x,y) in the LD energy can be linearized,
2 —2cos(P„+i —P„) = (P„+t—P„) = d (8P/8z), if the
points where the vortex cuts through adjacent planes (su-
perconducting CuO planes of distance d « A,b) have a
distance &( Ag where Ag = I'd is the Josephson length.
This condition means

~

tan 8~ && I', which coincides with
the condition for linearization that will be proven now.

Consider first an isolated vortex limited by planes z
and z+ dz. Tilting this vortex away from z

~~
c by an

angle 8 increases its length to dl = dz/cos8. In an
isotropic superconductor with vortex self-energy J =
4'pBct/leap (I'p = 2.07 x 10 is T m2 is the quantum of
fiux, B i = 4p[ln r + 0.5]/(4m A ) the lower critical field,
and A the penetration depth) this tilt increases the vor-
tex energy by dU|, ;&q

——J(dl —dz) = J(l/cos8 —1)dz-
(J8 /2)dz for 82 « 1. This means J is both line energy
and line tension. In anisotropic superconductors, how-

ever, the self-energy J(8) depends explicitly on 8. Lon-
don theory gives "to logarithmic accuracy" (explained
below)

J(8) = J(0)(cos 8+I' sin 8)

The tilt energy for small 8 then becomes dU|, ;1|,
——(J +

8 J/88 )(82/2)dz [8]. Here I have used the equilib-
rium condition 8J/88 = 0, which applies for 8 = 0
and 8 = vr/2. This argument shows that the line ten-
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sion in general is P(8) = J(8) + 0~J(8)/88 . With
(1) this gives P(0) = J(0)/I' for vortices along c and
P(7r/2) = J(0)I' = J(~/2)I'2 for vortices in the a b-plane
tilted out of the a-b plane. For tilt within the a-b plane
one has P = J = J(7r/2), see [9] for more details. In this
paper only the case B[[cwill be considered.

For arbitrarily large 8 one gets with (1) and dt

dz/cos8, dUt;ii ——J(8)d/ = J(0)(1+I' 2 tan 8)r~~. With
tan 8 = (Os/Bz) = s'(z) = z'(z) z + y'(z) 2 one obtains
the energy of an arbitrarily curved vortex

U„= J(0) [1 + I' s'(z) ]i~2 dz

and the tilt energy Uq;ii
——U„(s(z)) —U„(0j,

(2)

P
2

/2S
s" s"

4F~ 8F4

where P = P(0) = J(0)/I' is the line tension of a vortex
along c. Equation (3) shows that the line-tension picture
[first term in (3)] is an excellent approximation if ]s'] & I'.

Next I extend this picture to the vortex lattice. The tilt
modulus of the vortex lattice with B]]cis from anisotropic
London theory [8,9]

B' I' C'o lnkl
c44 k

po q1+ k,'A' + k' Az 4~A'Bp '+ 4

where k = (k~, k, ) is the wave vector of the displace-
ment field s(r) and K2 = (I"2K2 + k2A2b)/(1+ k2A2b),

A, b/(, b, thus K = I r. for k, (( A,b (nearly
straight vortices) and K —1 + 1/k, (, for k, )) A, b

(strongly curved vortices). In the following we shall al-

ways have k, &) A b, to be confirmed self-consistently.
For k, &) A b the compressional modulus [8] becomes

cii(k) = I' times the first term in c44, Eq. (4). The
elastic energy per unit length of a vortex then becomes
independent of k~,

ear restoring force applies if s (( A g. Since the vortex
spacing is typically ao (( A t, this means that even dis-

placements larger than ao are allowed provided the vortex
core does not come too close to another vortex; but even
then the energy does not diverge since the effective in-

teraction potential between vortices is smooth [7,12] and
vortices easily cross or cut each other [13].

The second term, originating from the interaction of
the vortex with itself, means that for suKciently short
bending wavelengths the vortex in the lattice has the
same line tension P(k, ) (6) as an isolated vortex. This
line tension has only weak logarithmic dispersion and is

strongly reduced by anisotropy. Note that the (approxi-
mate) logarithmic factor in P, ln K = ln(l/k, (,) does not
depend on the penetration depth since k, » A, b'. For

completeness I note that when I' » 1 and k, ( A, b'I'/10,
the last term in (4) and the line tension P in (3) have to
be replaced by the larger "pancake-stack" tilt energy of
the limit I' ~ oo.

Thus, sufBciently strongly curved vortices in a vortex
lattice behave like isolated vortices elastically bound to
the other vortices. In the following the binding term will

be disregarded since it is typically much smaller than the
pinning forces. In a sense, Equation (5) justifies the en-

ergy ansatz of Nelson [3] if the correct line tension (6)
is used and sufficiently strong (not weak as in [3]) cur-
vature with k, » A, b' is considered. Both energy terms
in (5) apply to much larger displacements s (( A, b and
tilt angles s' & I' than naive linearity arguments would

suggest.
The tilt energy (3) with P(k, ) from (6) inserted is a

very general and useful expression if one puts k, = L in

the logarithm, where L is a typical length of the problem
under consideration. For example, consider a flux line

rigidly pinned at its ends z = kL and deformed by a
current density J J z, Fig. 1(a). Minimizing the energy

2(s )[k~crr(k) + k, c 44( )k] O/oB Us+ Utit = —C'o Js(z) + —s (z) dz,
P,
2

with line tension

= 2(")BC'o/~oA.'b+ -', (s")P(k.) (5)

P(k ) = (C'oz/«poA2) lnK(k )

(( ) is the spatial average). The small shear energy
is disregarded in (5); its maximum value, reached when
only the one vortex is displaced [11], is = si of the
compressional energy, namely, 2(s )( k~) cs@so/Bwith
(kz) = kriz/2 = 27rB/Co and shear modulus css
BC?o/16rrpoA2b The result (5). has a simple physical in-

terpretation.
The first term means that each vortex sits in a

parabolic potential with curvature B@o/poA b originat-
ing from all other vortices within a range of several A b.

Only the average density of the neighbors enters but not
their precise position (since k~ does not enter). This lin-

one obtains s"(z) = —2q = const, q = Co J/2P. This
means the vortex "inflates" into a parabola s(z) = h —qz
with height h = qL2 and maximum slope s'(z = L)=-
2qL which should be & I'. The energy gain is UJ+ Ut, ~t

——

C'o JA where A = &Lb = ~qL is the
parabolic area.

A less trivial example of high relevance for technical
application of HTSC is pinning of vortices by long cylin-

drical defects oriented along B]]c. Such linear defects
were generated in YBCO [14,15] and BSGCO [16,17] by
irradiation with heavy Sn or I ions of = 500 MeV en-

ergy. It was found that the line pins increase the activa-
tion energy U for thermal depinning in YBCO but not
in BSCCO, since in YBCO (with I' = 5) long sections of
vortices have to be depinned, whereas in BSCCO (with
I' = 60) single point vortices (pancake vortices in the
CuO layers [18]) can easily depin individually [17,19].

1106



VOLUME 69, NUMBER 7 PH YSICAL R EVI EW LETTERS 17 AUGUST 1992

(c)

L

0

(b)

5
a

FIG. 1. (a) A vortex line along z~~c pinned by a chain
of ideal point pins with separation 2L. A transport current
perpendicular to the s-z plane deforms each vortex segment
into an ellipse which to a very good approximation coincides
with a parabola s = h —qz . The dashed line is for smaller
current. For J & J, '" neighboring ellipses touch and the
vortex depins. (b), (c) Pinning of vortices (bold lines) by line

pins (thin lines) along c~~z~~B. Thermal fluctuations partly
depin the vortex. Shown are the critical deformations with
minimum activation energy, i.e., the nuclei which will grow
spontaneously if a current is applied. (b) If neighboring pins
are far apart, the size of the parabolic nucleus L = L, oc 1/J
is determined by the current density J. (c) In the limit of zero
current the appropriate nucleus is a trapezoid with the short
roof pinned by a neighboring line pin and with activation
energy Up (8). (d) A finite current density J deforms the
trapezoid as depicted here. This general nucleus has a reduced
activation energy U3n(J) (9).

The size, shape, and activation energy of the depinning
nucleus can be calculated by adding to UJ + Ut;~t (7)
the pinning energy U„ times the length of the depinned
vortex section. One has U„= e@p/4n ppA b with e ( 1;
for a cylindrical hole of radius R & v 2(~b (the vortex core
radius [20]) one finds s —0.5+In(A~b/(~b) —ln(A~b/R) =
0 5+in(R/. (~b) 1. Here the term 0.5 originates from the
condensation energy and the ln(R/(~b) from the different
inner cutoff radii for the magnetic energy of pinned and
free vortices.

For large current densities J, or large pin separa-
tion a, maximization of U(L) = Ug + Ut;~t + 2LU„=
zUg + 2LU„gives a parabolic nucleus as above, with
half-width L = L, = (2U„P)i~z/4 p J, height h, = qLz =
U„/C p J, curvature q = C'p J/2P as above, and energy
U, = U(L, ) = sL,Up ——s(2UsP)iIz/4pJ, Fig. 1(b).
The maximum slope is s'(z = L) = p = (2U„/P—) Iz =
[2e/ln(L, /(, )) I I' ( I' since L » g, = ( b/I' Anu-.
cleus with L & L, will grow spontaneously, driven by
the current. U, is thus the activation energy for ther-
mal depinning. Note that both L, and U, diverge with
decreasing current density as 1/ J.

In the limit of zero current density, the fluctuating vor-
tex has to touch a neighboring line pin (at average dis-
tance a) to trigger spontaneous depinning. The nucleus
is now a trapezoid with sides of slope p = (2U„/P) i~2 as

Up,

(9)

U(J & Jp) = Up, with Jp = ~
"2Jp . U„

3J Cipa

This activation energy does not depend on the pin-
ning force (or pin radius R) but only on the pinning en
ergy (depth of the well). Quite generally, pinning energy,
pinning force, and activation energy depend on different
material parameters.

I will show now that for arbitrary pinning potential
V(s) of a line pin, with V(0) = —U„and V(oo) = 0,
the pinning force on a partly depinned vortex is bal-
anced by the line tension P, i.e. , the vortex slope s'(z)
outside the pin has the value p = (2U„/P)i~~ obtained
by energy considerations above. Minimizing the energy
f[Ps'2/2+ V(s) ]dz one obtains s"(z) = V'(s)/P. Mul-
tiplying this by s'(z) and integrating both sides one ob-
tains (P/2) [s'(z = oo)]2 = I (BV/Bs) (Bs/Bz) dz

Jp V'(s)ds = U~; thus s'(oo) = (2U„/P) i .
Enside a parabolic pinning well the depinning vor-
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above and basis width 2L+ w = 2a/p+tp, Fig. 1(c). The
width tp of the trapezoidal top follows from the pinning
force per unit length, = U„/R, since the pinned top has
to balance the tension of the trapezoidal sides, tpU„/R &

2pP; thus ur & pR/U„= 2R/p & 2R/I' & 2.8(, for slope

p & I' and pin radius R & 1.4( b. The top width is
thus very small and the nucleus is nearly a triangle. An
arbitrarily small current inflates the nucleus by increas-
ing the width tp Th. e energy of the nucleus, the activa-
tion energy, is Up = U, (J = 0) = 2a(2U„P)iIz = 4LU„
where L = 2a/p = a(P/2U„) I = a[2 1n(L/(, )/s]i~z/I'.
The factor 1/I' originates from the small line tension and
means that for large anisotropy the activation energy Up

and the effective depinning length Up/U„= 4L are very
small. Explicitly one has

Up = [8c ln(L/(, )] aC p/(47rppA bA ) . (8)

If in layered superconductors Up (8) becomes smaller
than the pinning energy U2D = U„d of a pancake vor-

tex, Up & U~D equivalent to 2L & d where d is the layer
spacing, then the elastic energy of the depinning vortex
line can be disregarded and the activation energy for de-

pinning is UzD = dsCp/4z ppA b. This means each point
vortex can depin individually.

For arbitrary current density J, the situation is as fol-

lows. For J & Jp = U„/Cpa, the parabolic nucleus de-
termines the depinning since its height is h ( a, the
pin spacing; in this case U, (J) = (2Jp/3J)Up. For
0 ( J ( Jp, the triangular nucleus is deformed by the
current, Fig. 1(d). This "inflation" reduces the activa-
tion energy. The sides of this general nucleus have the
shape s(z) = pz —qz for s ( a with p and q from above.
The half-width is L = [p

—(pz —4qa)i~z]/2q, and the
energy is U~+ Uq;lt+ 2LU& as above. After some algebra
one obtains the general activation energy

3/2

U(J( Jp) = 1 —
i

1 ——
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tex has exponential shape, s(z) Ix exp( —z/l) with
l = (P/U") ~~ . For U" = 2U„/'R2 [e.g. , if U(s)

—U exp( —s2/R2)] the pinning length is l = R(P/
2U&)~~2 = R/p. As a result of the large range of linear
elasticity these results apply up to large slopes p = I'.

How do the nonlinear terms in (3) change these results?
From (2) one can show that the exact vortex shapes in all
the above examples are ellipses with axes Z = I'/2q =
I'P/JC p and X = I'Z, e.g. , s /X + z /Z = 1. The
parabola above is an excellent approximation to the el-

lipse since we always have ]s'(z)] & I'.
If a vortex is ideally pinned at equidistant points with

separation 2L, depinning is triggered when the current
inflates the vortex segments into half ellipses. These
touch each other at the pins and merge and depin.
Such pinning-force independent depinning occurs when
L = Z = I'P/JCp. This process defines a maximum
critical current density

I'P 4p ln(L/(, )
4 I 4 pA Al

Exactly the same result is obtained from the linear ap-
proximation and the condition ]s'] & I'.

In conclusion, the linear elastic approximation of the
vortex lattice has a much larger range of validity in
anisotropic superconductors with B]]c than is usually
expected. Taking advantage of this fact I obtain the
current-dependent activation energy U(J) for depinning
of vortices from line pins oriented along the c axis and
the critical current density J, '" of a chain of ideal point
pins. Both U(J) [9] and J~'" [10] decrease with increas-
ing anisotropy as I/A, . The values of U(J) and J, '
are given here for equidistant pins; for randomly posi-
tioned pins a more complete statistical treatment is re-
quired [21]. If the width of the depinning nucleus for
J —+ 0, 2L = [8 ln(L/(, )/e]'~2a/I' (with e & 1), becomes
smaller than the distance d of the superconducting layers,
2L & d, the activation energy saturates to the small value
U2D = U„d & Up & U(J). This means that in BSCCO
with line pins the point vortices in the CuO layers depin
individually as found also in [17,19].

Finally, I show that the helical instability predicted
by Koyama and Tachiki [22] for a vortex along the
c axis does not exist. For a helix with s(z)
(r cos k, z; r sink, z), elasticity theory (3) yields a posi
tive energy per unit length along z, Uh, i = 2P(k, )r k,
with line tension P(k, ) from (6). Helical deformations of
the vortex will thus not form spontaneously. As shown
above, this linear elastic result applies up to very flat
helices with slope ]ds/dz] = k, r & I'. The exact elastic
energy of the helix is

Uh, ) = P(k, )I' [(1+r k, /I' )'~ —1].

The linear elastic energy density of a helical deformation
of the vortex lattice is also positive, 2c44(0, 0, k, )r k, ) 0
with c44(k) from (4). The flux-line lattice is thus stable,

and helical instability will occur only when a longitudinal
current is applied [23].
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