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We present a calculation of the inverse participation ratio in finite quasi-one-dimensional samples in

the whole range of the scaling parameter within the framework of a one-dimensional nonlinear superma-
trix cr model. The results are valid for both thick wires and random band matrices with large bandwidth
and so are relevant for quantum chaos problems. The derived form of the scaling )aw exactly coincides
with the empirical expression deduced earlier from results of computer simulations.
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The one-parameter scaling hypothesis put forward in

[1] can be formulated as the requirement that all physical

properties of the disordered solid of finite size should be

expressed only in terms of the ratio between the localiza-
tion length for the infinite sample, g, and the size of the

sample L. The remarkable feature of the quasi-one-

dimensional disordered systems is that not only do they

allow for rather detailed numerical investigations of their

scaling properties [2], but also the explicit calculation of
scaling functions becomes possible under some conditions.
This was recently demonstrated by Zirnbauer [3] who

managed to calculate such a function for the average con-

ductance.
Recently the interest in the scaling properties of ran-

dom quasi-one-dimensional systems was greatly stimulat-
ed not only by electron transport theory itself, but also by
new developments in the field of "quantum chaos. " It
was found that for certain deterministic Hamiltonian sys-
tems whose classical dynamics is chaotic, quantum eA'ects

suppress classical diA'usion in the phase space in a way
analogous to suppression of the diA'usion of a quantum
particle by a random potential, known as the Anderson
localization phenomenon. The prototype system where
this eA'ect of "dynamical localization" was discovered for
the first time was the so-called kicked rotator (KR) (see
review [4]), for which a formal connection with the An-
derson tight-binding model has been found [5]; later the
eA'ect was shown to occur in a number of other systems,
e.g. , the hydrogen atom in a monochromatic field [6].

In an appropriate basis, the matrix of the "evolution
operator" U for the KR that relates values of the wave
function in one period of perturbation appears to have a
band structure with pseudorandom elements within the
band [41. The width of the band proves to be large in the
chaotic regime. These observations lead to the conjecture
that statistical properties of eigenvectors and eigenvalues
of the KR model can also be typical for the ensemble of
random band matrices (RBM) introduced in [7].

Intensive numerical simulations [8,9] gave evidence for
this conjecture and revealed some nice scaling relations
that hold for both the KR and RBM. A set of general-
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where pq =gq/gq"" and x* =b /N, b being the bandwidth
of the matrix, C being some model-dependent constant,
and gq~" being the generalized localization length for
some reference ensemble taken to be a Gaussian orthogo-
nal ensemble for which gq~ is known explicitly (e.g. ,
g2'" N/3). In a very recent paper [10] a relation
equivalent to Eq. (2) was claimed to be true also for
genuine one-dimensional tight-binding models —those of
Anderson and Lloyd.

In contrast to the numerous computer investigations of
the KR and RBM, analytical results are much less abun-
dant, and so the status and the range of validity of con-
jectures deduced from numerical simulations are not
clear. As to the KR problem, we should mention that
some analysis becomes possible on the basis of the quasi-
classical approximation [11]. However, the region of pa-
rarneters where quantum eff'ects prevail has so far been
beyond the reach of this approach.

The theoretical consideration of RBM was started in

[12], where the investigation of statistical properties of
RBM was reduced to the analysis of a supermatrix (grad-

ized localization lengths gq, q =1,2, . . . , was introduced
according to the definition

ln(q = in+ ~ ei, (n)
~
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Here Ei, is an energy level of the "Hamiltonian" (band
matrix), 4'~(n) stands for the component of the corre-
sponding eigenfunction at given site n =1,2, . . . , N, N
being the sample length (matrix size), and the overbar
denotes an averaging both over the disorder and over all
sites of the sample. Such a quantity gq

' for q =2 coin-
cides with the frequently used "inverse participation ra-
tio" (IPR) which is related to the probability for a quan-
tum particle to stay at a given site for infinite time.

It was found that in a wide range of parameters nu-
merical results are well described by the following empiri-
cal scaling law [8]:
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ed) nonlinear o model. The same o model was derived
earlier in the course of the investigation of electron locali-
zation in thick wires [13].

In the present paper we give, for the first time, an
analytical derivation of the scaling law equation (2) for
the inverse participation ratio g2 by using the graded
nonlinear cr-model formulation. Though our results are
equally applicable to both RBM and thick wires, we
mostly keep with the RBM terminology.

We consider the ensemble of random bandlike N xN
(N » 1) real symmetric matrices H whose elements

H;~ =H~; are distributed independently around zero ac-
cording to the Gaussian law, with the variances (H;~ ),, .
= —,

' A;i(1+Bi) depending on the distance r =
~i

—j~.
When r & b the function A;z =a(r) is assumed to be (ex-
ponentially) fast decreasing, b playing the role of the
effective bandwidth. We also adopt the normalization
condition Bo=g- a(r) ee 1 at b»1.

Our starting point is the following well-known expres-
sion for the "position-dependent" IPR P(n) in terms of
the two-point Green function [14]:

P(n) = lim e(K(n, n))
1

zp t. 0
(3)

E+ie —H E —ie —H

where the brackets ( )„denote the disorder averag-
ing, and p is the density of states.

By using the supersymmetry approach [13,15] it is pos-
sible to perform the averaging in Eq. (3) and, provided
the parameter b is large, to reduce the quantity
(K(l,m)),„ to the form [12,16]

2

(K(l, m)),.„= „+dp(Q;)F(gl, g )exp[ —S{Q[],
4

(4)

F(QI, Q ) =Str[kg~ ']Str[kQ ]+281 Strlkg~ kQI ],
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where

S[QI =—QStr(g; —
Q; + 1) +iF Str+Q;L,

I l
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Here the symbol Str stands for the supertrace [13],

I„=diag(1, I, . . . , l)
n

and the integration in Eq. (4) goes over supermatrices
Q;= —iT; LT;, with matrices T; satisfying the condi-
tion T; LT; =L and forming the graded Lie group
UOSP(2, 2/2, 2) [see the review [15] for their properties,
including the invariant measure dp(g)].

The action equation (6) defines the one-dimensional
nonlinear graded o model. Its continuous version was in-

vestigated for the first time in the context of electron lo-
calization in thick infinitely long wires [11],with the pa-
rameter y being proportional to the bare diffusion con-
stant and t. being related to the external frequency.

In the present context we find it to be more convenient
to investigate the discrete version of the model equation
(4) going to the continuous limit at the very end. We
should mention that a very detailed study of such a model
was performed on the Bethe lattice [4] in the limit of
infinite sample. Since the one-dimensional lattice can be
considered as the limiting case of the Bethe lattice, we

can make use of the intermediate expressions derived in

these profound papers.
The procedure suggested in [14] can be briefiy outlined

as follows. The one-dimensional structure of the in-

tegrand in Eq. (4) allows one to write the following ex-
pression for the position-dependent IPR:

P(n) = lim e dp(Q) Y(Q;N —n)F(Q, Q) Y(Q;n)exp[ —iiStr(QL)],
16 e-o

Y(g';n+1) = dp(g)Y(Q;n)L(g, g'), Y(Q;0) =1,
(g)

where the function Y(g;n) satisfies the recurrence equa-
tion or X2a:t.' ))X],X. In this asymptotic domain the func-

tion Y(k|,12,X;n) proves to be dependent only on the vari-
able z =A, ] 2t.' and performing the computation one finds

L(g, g') =exp[ —
2 yStr(g —Q') —iFStr(QL)] .

By using the Efetov parametrization [13,14] of the ma-
trices g it is possible to show that Y(g;n) depends only
on the "eigenvalues" A, l z, k of the block Q' and to per-
form the integration over the remaining degrees of free-
dom. The crucial simplification occurs when e 0 since
the only nonvanishing contribution to the integral over

2 comes from the regions where either X ]
—6 ))X2, X

P(n) =3«dz Y(z;n) Y(z;N —n)exp[ —«z],

Y(z;n+1) =„t dz i L„(z i) Y(zz n)elxp[ —«zz 1],

V(z;0) =1
(10)

The particular form of the kernel L„(z1) can be found in

[14], but it is actually unimportant for our purpose. The
relevant properties of this kernel are
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dz
1
1.„(z 1 ) =1,Jp

lim Ly(zl ) =8'(zi —1),

p oo

L„(zi)(zi —I)'dzii„&) i =(2y)

Since y~b ))1 we can replace the integral recurrence
relation equation (10) by the differential one. Moreover,
it follows from general physical arguments that the IPR
must be of the order of P-z =max(g ', N '). Taking
into account that g ~b &&1 [12] we see that z &&1.

From this we conclude that the integration over z in Eq.

(9) is effectively cut off by the fast decrease of the func-
tions Y(z;n) for z & z . Therefore, for our purpose it is
sufficient to know the function Y(z;n) in the domain
z (( l.

At this point is is convenient to pass to the continuous
limit, that is, to introduce the continuous variable
=n/4y', 0( z (x=N/4—y, instead of the discrete vari-
able 0 ~ n (N and to substitute (1/4y)BY(z, z)/Bz for
Y(z;n+ 1) —Y(z;n) .Besides, we introduce the new
"scaling" variable y =4yzpz and average the position-
dependent inverse participation ratio over different sites:

'=(1/N)Q„P(n). Remembering y» 1, (ooE=3/N,
we arrive at the following expressions:

3 woo Pz def
'(x) =— dy dz Y(y, z) Y(y, x —z) = &GoEP2 '(x), (i 2)

8Y(y, z) =R [Y(y, z ) ], R = —y+y' d
Y(y, z =0) =1.

The standard way to solve an equation like Eq. (13) is to look for its solution in the form of a generalized Fourier ex-

pansion in terms of eigenfunctions of the operator R. The set of such eigenfunctions that decay at y is

f„(y) =2y'i K, (2y'i ), K„(t) being the Macdonald functions, and the corresponding eigenvalues are A,, =(r —1)/4.
The functions f„(y) with purely imaginary indices r =i v, v 6 [0,~), form the complete orthonormal set and can be used

as a suitable basis for the expansion. Such an expansion is known as the Lebedev-Kontorovich transformation and pre-
cise conditions are known under which this transformation exists and is invertible [17]. Making use of the correspond-

ing formulas we find that the solution to Eq. (13) satisfying the initial condition Y(y, 0) =1 is given by

f+ OO

I/2 1+~
Y(y, z ) =2y' Ki(2y 'i )+J dvb(v)K;„(2y'i )exp'—

(i4)

b(v) = vsinhxv K;„(x)[x ' —Kl (x)] =— sinh(zv/2) .
2 . —i dx 2 v

x Tf 1++
When calculating the coefficients b(v) the use of the
identity

x ' —Kl (x) = du e "sin(xsinhu) (is)

has been made together with the formulas of [18(a),
18(b)].

In order to proceed further we notice that instead of
the scaling function Pz (x) defined in Eq. (12) it is more
convenient to study its Laplace transform pL(p)
=fo e ~"pz '(x)dx. Introducing the notations t =2y 'i,
p =4p+1 we get

Q oo

pL(p) =—„, dhtYL2(r, p),

YL (r,p) =—
J du u, , J„ 1 (tu),1+p+ u z(p —1)

p 0 u +1
where J„(a) stands for the Bessel function. The expres-
sion for YL(t,p) can be obtained after straightforward
but lengthy transformations from Eq. (14) by using the
formulas of [18(c)-18(f)].

Substituting YL (t,p) into the formula for pL (p),
changing the order of integration, and using the virtual
orthogonality of the Bessel functions,

f+ OO
1„, dt tJ„(tu)J„(tu') =—a(u —u'),

we easily find the function pL(p) and immediately restore

pz '(x):

PL(P) =—+
z Pz '(x) =1+ —,

' x.1 1 (i8)
p 3p

Remembering the definition x =N/4y=(b /4y)/x* we
see that Eq. (18) takes the form of Eq. (2) with the con-
stant C=12y/b On the oth. er hand, substituting the
definition Pz(x) =gz(x)/g2'" into Eq. (18) we can rewrite
it in the following form

1

(Nz, b')
1 + 1 (19)

equivalent to the "model-independent" form of the scal-
ing law proposed in [10].

In conclusion we would like to note that the calculation
performed in the paper can be easily repeated for a sys-
tem with broken time-reversal symmetry, that is, for Her-
mitian RBM (Hv =Hi;*) or, in another words, for wires
with magnetic field. The result is that the scaling law

equation (2) retains its validity, but the constant C be-
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comes twice as small in comparison with the symmetric
case. This fact is directly related to the known eff'ect of
doubling the localization length of a disordered sample in

a magnetic field [13,19].
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