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EA'ect of Lattice Zero-Point Motion on Electronic Properties of the Peierls-Frohlich State
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We study the consequences of the previously overlooked fact that in most quasi-one-dimensional ma-

terials with a Peierls-Frohlich ground state the lattice zero-point motion is comparable to the lattice dis-

tortion. The density of states deviates significantly from that of a rigid lattice, containing a tail of
strongly localized states below the gap. Moreover, thermal lattice motion causes the tail to increase

significantly with temperature. This is consistent with the subgap optical absorption seen in these ma-

terials.

PACS numbers: 71.38.+i, 71.20.Hk, 71.45.Lr, 78.40.Ha

The wide range of quasi-one-dimensional materials
with a Peierls-Frohlich ground state continues to expand
as new materials are synthesized. It has recently been

predicted that fullerene tubules have a Peierls ground
state [I]. Widely studied materials include inorganics
[MX chains [2], the platinum chain compound KzPt-
(CN) 4Bro 3, and the charge-density-wave compounds

NbSe3 and Ko3Mo03] and organics [trans-polyacetylene
(CH)» [3] and the charge-transfer salt TTF-TCNQ].
Below a three-dimensional transition at Tp each chain
has a periodic lattice distortion with twice the Fermi
wave vector, 2kF, resulting in a gap in the electronic spec-
trum at the Fermi surface. Although the lattice distor-
tion increases the elastic energy, the gap preferentially
decreases the electronic energy, making the Peierls-
Frohlich state energetically favored over the metallic
state.

It is commonly held that the electronic properties of
the three-dimensionally ordered state are well described

by mean-field theory [4] and that the phonons can be
treated in the mean-field approximation, i.e., a static lat-
tice is assumed. However, we point out two discrepancies
with experiment. (i) For all temperatures the optical ab-
sorption a(to) is predicted to be zero for frequencies less

than the gap, 2h„and contain an inverse-square-root
singularity at co=23,. The observed optical absorption is

quite diflerent [5,6]. The singularity is absent, and there
is a significant tail below the maximum. Furthermore, as
the temperature increases, broadening of the spectrum
occurs on an energy scale much larger than kT. (ii) The
energy gap deduced from the absorption edge is smaller
than the activation energy of the dc conductivity [6]. We
also point out that there is no accepted theory of the tem-
perature dependence of the lattice distortion and the gap
parameter. Most measurements are compared to empiri-
cal formulas or the mean-field (BCS) form with a renor-
malized transition temperature [7]. Attempts have been
made to explain some of these facts in terms of solitons
[8], disorder [6], and imperfect nesting [9].

In this Letter, we show that the above properties can be
consistently modeled, without invoking additional interac-
tions such as disorder, Coulomb interactions, or inter-

TABLE I. Comparison of the magnitude of the measured
lattice distortion up with the magnitude of the lattice zero-point
motion Bu for various quasi-one-dimensional materials. The
zero-point motion is calculated from co21, , the phonon frequency
measured by neutron or Raman scattering, and the mass M dis-

placed in the lattice distortion by 8u = (h/2Mtp2kr) '
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chain hopping, by including the effect of the zero-point
and the thermal lattice motion on the electronic proper-
ties. In polyacetylene the zero-point motion of the lattice
8u is comparable to the lattice distortion uo [101. It has
been shown [10-12] that this causes only a small reduc-
tion in the dimerization below the mean-field prediction.
Table I shows that Bu and uo are also comparable in a
wide range of materials. Furthermore, at temperatures
comparable to the transition temperature the thermal lat-
tice motion-can be several times larger than uo. Given

that the size of the electronic gap is proportional to uo

[13], lattice fluctuations should have an important effect
on the electronic properties. In fact, if 8'u —uo one might
wonder why there should be a clearly defined gap in the
spectrum at all.

We show that the zero-point and the thermal lattice
motions are a source of disorder: They have an effect on

the electronic properties similar to that of a random po-
tential with Gaussian correlations. For this latter model
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exact expressions for the energy dependence of the elec-
tronic density of states and of the localization length can
be obtained analytically. For parameter values corre-
sponding to actual materials, the Auctuations cause
significant modification of the density of states: They re-
move the inverse-square-root singularity and produce a
large tail of strongly localized states belo~ the energy gap
(Fig. 1). The spectrum varies on a temperature scale set
by the frequency co~I,, of the 2k~ phonon. The zero-
temperature lattice distortion and gap parameter are only
slightly reduced below the mean-field predictions, in

agreement with previous studies of the Su-Schrieffer-
Heeger (SSH) model for polyacetylene [10-12]. Howev-
er, the disorder due to the thermal lattice motion can des-
troy the Peierls-Frohlich state at a temperature well
below the mean-field transition temperature.

The low-lying excitations of the Peierls-Frohlich state
are phonons with wave vector near + 2kI; and electrons
with wave vector near + kF. The phonons can be de-
scribed by a lattice distortion field u(x) which is complex
(real) for an incommensurate (commensurate) lattice
distortion. The electrons can be described by a spinor
+, (x), the upper and lower components for electrons
with spin s moving with the Fermi velocity t. F to the right
and left, respectively. The electronic part of the Peierls-
Frohlich Hamiltonian with electron-phonon coupling g
can be written in the form [14]

H =
J dx +.' —ii'F rr3 + [B(x ) cr+ + M

*(x ) (T ]
r)x 2

Important energy and length scales are defined by the
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I. IG. 1. Significant modification of the electronic density of
states by lattice zero-point and thermal motion. The two solid
curves correspond to a typical material at T=O and T=2coz& .
[The disorder parameter defined by Eq. (1) has values g =0.15
and 0.6, respectively. ] The dashed curve (g=0) corresponds to
a rigid distorted lattice. The zero-point motion removes the
inverse-square-root singularity in the density of states for the
rigid lattice and produces a significant tail below the energy
gap. The thermal lattice motion causes the broadening to in-

crease with temperature. The results shown are for an incom-
mensurate lattice distortion. Very similar results are obtained
for the commensurate case of a half-filled band.

gap parameter h, =guo and by the coherence length

go
——iF/6 T. he bandwidth W is defined by W=2iz-/a

x sin(kFa). The dimensionless electron-phonon coupling
constant k is defined [I 5] by A, =2g (6u) 'a/z~ I-ro~&, . The
zero-temperature mean-field gap parameter is given by
AMt;= W[l —cos(kFa)]e

Model of lattice fi'ucruations .F—luctuations in the lat-

tice distortion field can be modeled by a static random

potential [14] provided (i) the characteristic phonon en-

ergy is much smaller than the energy gap and (ii) the

phonons are dispersionless. Both of these conditions are
well satisfied for most materials e.xcept near the transition
temperature. Condition (i) corresponds to the adiabatic
or Born-Oppenheimer approximation. In particular, in a

diagrammatic perturbation theory for the one-electron
Green's function each phonon propagator D(q, t) can be

replaced by the equal-time propagator D(q, i =0). The
perturbation theory is then identical to that for an elec-
tronic system where u(x) is a random slatie potential,
with mean (u(x)) =un. Furthermore, for dispersionless

phonons [condition (ii)] the potential has Gaussian
(white-noise) correlations:

(u(x)u*(x')) =u(i+(Su)'coth(rupl, ,/27')~&(» —x') .

Behavior consistent with this equation was observed in

quantum Monte Carlo simulations [10,11] performed for
the SSH model [3] of trans-polyacetylene We find th. at
the random configurations generated for a 16-site system
are very similar to those found in Ref. [10].

The strength of the disorder is proportional to 1/r, the
electron-phonon scattering rate for states well above the

gap. The dimensionless disorder parameter

R'C02g N21, F
g =— =g coth

2h,

is central to this paper because it determines the proper-
ties of the subgap states. It can be shown that the fluc-
tuations change the density of states on an energy scale
rl A. We can also write g-(2A/W')(6u/uo) at T=O
Hence, when the bandwidth is much larger than the gap,
as it usually is, the eA'ect of the lattice Auctuations is re-
duced, This explains why a reasonably well-defined gap
is still possible when Bu —uo. Based on Table I, mea-
sured energy gaps, and band-structure calculations of
bandwidths we estimate that in most materials g —O.OS

to 0.2 at zero temperature. For T) cu2~-„ the disorder
parameter increases linearly with temperature (g=H. T/
5). If tuque. ,—50-100 K, as it is in many materials, g can
be of order unity at the transition temperature.

The model of static Gaussian disorder in the Peierls-
Frohlich state has been studied extensively. At the level

of the self-consistent Born approximation the problem i»

mathematically equivalent to that of magnetic impurities
in a superconductor. However, exact expressions for the
density of states p(E) and the localization length L(E)
can be obtained by several diA'erent techniques, for both
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the case of an incommensurate lattice distortion [16] and
the commensurate case of a half-filled band [17]. The
two different cases give very similar results for weak dis-
order but differ qualitatively for strong disorder (rt) I).
The relevance of these exact solutions to understanding
the effect of zero-point and thermal lattice motion in per-
fect crystals has not been pointed out previously.

The density of states has three important features if
rt) 0. 1 (compare Fig. I). First, there is no large peak at
the gap edges, in contrast to the inverse-square-root
singularity which occurs in the absence of the zero-point
motion. Second, the density of states is nonzero for all
energies and has a substantial subgap tail. Third, when

the temperature becomes of the order of the phonon fre-
quency, co2p„ the disorder increases, and the smearing of
the density of states increases considerably. These three
features explain the discrepancy between static lattice
calculations and the observed optical absorption [5,6] of
many materials [8].

Localization length. —In our one-dimensional system
all the electronic states are exponentially localized on a
length scale L(E). Figure 2 shows that the localization
length is of the order of the coherence length gp for the
subgap states, and typically much larger [L(E)=2(p/ri]
for states well above the gap. The strong energy depen-
dence of the localization length near E=6, is somewhat
similar to a mobility edge and will have an important
effect on transport properties. Transport involving the
subgap states will be suppressed. Consequently, we ex-
pect the gap deduced from the activation energy of the dc
conductivity, hd„should be larger than the gap deduced
from the optical absorption threshold, 2h,. b, . This is ob-
served in many materials [6].

Reduction of the gap parameter and lattice distortion
at zero temperature. —Figure 3 shows that the zero-point
motion causes a small reduction in the order parameter

below the mean-field (i.e., static lattice) value. In gen-
eral, we find that if kco2~, &0.3hMp, the reduction is
small. For example, for a half-filled band with the SSH
[3] parameter values for trans-polyacetylene we find

up/uMF =0.9, a reduction consistent with values in the
range 0.75 to 0.96 found in previous studies [10-12].

Temperature dependence of the gap parameter and
lat tice distortion. —We model the three-dimensional ly
ordered state by minimizing the free energy of a set of
one-dimensional chains with infinite three-dimensional
correlation length. Figure 3 shows that the reduction of
the gap parameter below the mean-field (BCS) value in-
creases with increasing electron-phonon coupling X. The
temperature dependence is not universal and deviates
from the BCS form with a renormalized transition tem-
perature. In particular, whereas the BCS curve is ex-
tremely flat for T & 0.3Tp, Fig. 3 shows a significant de-
crease in this range, as has been observed [7]. The reduc-
tion of the transition temperature Tp well below TMF
(Fig. 3, inset) is in contrast to the conventional view [4]
that Tp is determined by the competition between quasi-
one-dimensional thermodynamic fluctuations and inter-
chain interactions. Our model neglects these fluctuations
and so overestimates Tp [181. Nevertheless, solely as a
result of the thermal lattice motion, we can conclude that
the ratio h(0)/kTp can be well above the mean-field
value of 1.76.

Finally, we speculate that electron-electron interactions
[13] will reduce the effect of the zero-point motion only
when they provide the dominant contribution to the gap.
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FIG. 2. Energy dependence of the localization length of the

electronic states. Due to the one dimensionality all the elec-
tronic states are localized by the random potential resulting
from the lattice fluctuations. For weak disorder the subgap
states are much more strongly localized than the states well
above the gap. The unit of length is the coherence length (p.
The results shown are for an incommensurate lattice distortion.
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FIG. 3. Significant modification of the temperature depen-

dence of the gap parameter and lattice distortion by thermal

lattice motion. h, MF and TMF are the mean-field values of the

zero-temperature gap and transition temperature, respectively.

The enhanced reduction in the lattice distortion with increasing

temperature is predominantly due to disorder from thermal lat-

tice motion [cf. Eq. (1)] rather than thermal excitations across

the gap (cf. mean-field case). The results shown are for an in-

commensurate lattice distortion. Our theory breaks down

where the curves are dotted [1gl; they can easily be extrapolat-

ed to the transition temperature Tp. Inset: Dependence of TI
on the dimensionless electron-phonon coupling constant A, .
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In summary, in most Peierls-Frohlich systems the
zero-point motion is comparable to the lattice distortion.
The resulting disorder causes the electronic properties to
deviate significantly from those predicted for a rigid dis-
torted lattice.

We have benefited from discussions with and helpful
criticisms from M. Alouani, 3. W. Brill, S. E. Brown, A.
3. Epstein, G. Griiner, K. Kim, B. R. Patton, J. P.
Pouget, VV. P. Su, and 3. Voit. This work was supported
in part by the DOE, Basic Energy Sciences, Division of
Materials Sciences.
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