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Ab Initio Molecular Dynamics: Analytically Continued Energy Functionals
and Insights into Iterative Solutions
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We present a new method for performing finite-temperature ab initio total-energy calculations at long
length scales, which we demonstrate with a dynamics calculation of 50-A-long phonon modes in silicon.
The method involves both a prescription for the analytic continuation of traditional fermionic energy
functionals into the space of nonorthonormal single-particle orbitals (speeding convergence to the
minimum) and insights into the common computational physics problem of solving by iterative
refinement for the state of a complex system as a function of a continuous external parameter.

PACS numbers: 7 I.10.+x, 63.20.Dj

Molecular dynamics is an intuitive and direct method
of computer simulation of condensed matter systems. In
a milestone paper of the last decade [1], Car and Par-
rinello introduced an ab initio technique where the elec-
tronic wave functions are evolved simultaneously with the
ions using a fictitious equation-of-motion approach which
keeps the electrons close to the Born-Oppenheimer (BO)
surface. With recent advances in highly parallel comput-
er architecture, calculations on systems with hundreds of
atoms are now tractable [2], not only permitting more
comfortable extraction of the thermodynamic limit but
also extending the qualitative level of complexity in ac-
cessible problems. However, with growing interest in cal-
culations involving larger systems, it has been demon-
strated that, as the longest physical length scale in a cal-
culation increases, integration of the fictitious electronic
equations of motion becomes dominated by fluctuations
in the electronic Hartree energy ("charge sloshing" ) [3]
which force the time step for integration of the equations
of motion to approach zero as the system size increases.
While the onset of this instability depends on the physics
of the system under study, the effect has been demon-
strated dramatically in a silicon system of six primitive
cells (-46 A long) at 8 Ry [3]. To fully benefit from the
next generation of computer technologies, an approach
free of charge sloshing is needed.

Recently, conjugate-gradient procedures introduced by
Teter, Payne, and Allan [3] and Gillan [4] for relaxing
the electronic wave functions at fixed atomic arrange-
ments have been shown not to exhibit the aforementioned
instability and to consume an order of magnitude less
CPU time than the best fictitious electronic dynamics
schemes. Despite this improvement, performing a dy-
namics calculation, by repeatedly taking the wave-
function solution from the previous ionic time step and
refining it back to the BO surface with conjugate-
gradient techniques to produce the solution for the
current time step, is very costly [5] because of the tight
tolerances to which the electronic problem must be solved
(typically 10 peV/atom) to yield stable atomic trajec-

tories. In this work we introduce improvements over the

procedure just described both in the choice of trial wave

function and in the search for the BO surface which re-

sults in an eScient ab initio dynamics scheme suited for
calculations in long-length-scale systems.

Alternative initial conditions for reftnement at each
time step. —We are faced with the general problem of
solving by iterative refinement for the state of a system,

specified in our case by the wave functions e, as a func-

tion of a continuously varying external parameter, for us,

the time t. At each time step t„one may, as we described

above, simply take the solution from the previous time

step e(t„~) as input to the refinement process. An im-

provement on this simple idea may be to take the familiar
multilinear extrapolation as the initial "trial" solution,

e'(t„)= g ( —I) " e(t„), (I)
m I

where ( )=M!/m!(M —m)! [6]. But, as we soon shall

see, such extrapolations often introduce instabilities into
the algorithm.

To understand the origin of these instabilities in the
hope of eliminating them, let us assume that e'(t„) is al-

ready fairly close to the exact solution, e*(t„), and

linearize the eA'ect of the iterative process so that we may
write

e(t. ) =e*(t.)+F[e'(t. ) —e*(t.)],
~here F is some matrix. Assuming that F may be
resolved into principle axes a, (I) and (2) combine to
give a series of linear difference equations for the ampli-
tude of the error along each principle axis, B,=[e(t„)
—e*(t„)l.:

M
(3)
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where the f, are the characteristic values of F T. hough
we know nothing a priori about the term on the right-
hand side of (3), it serves as a driving term for the homo-

geneous kernel on the left, and the error along a will be
unstable to the formation of exponentially growing modes
if any of the roots of the kernel's characteristic polynomi-
al lay outside the unit circle. In Fig. 1 we see that for the
first proper extrapolation, M=2, all modes are stable (in
general we expect lI, l

& I), but for M=3 any error
mode with f & —

7 or f) 2 will grow exponentially un-

til these "difficult" modes dominate the convergence of
the system from @' toward 4* and significantly degrade
the performance of the algorithm. The analysis of the in-

termediate case where M=2 and M =3 extrapolations
alternate with each time step is more difficult (we must
then consider distinct F matrices for the M=2 and M =3
time steps), but the behavior will be intermediate with an

increased range of stability.
Our calculations in the system described in [5] exhibit

exactly these phenomena. Though the M=2, the alter-
nating, and finally the M=3 extrapolation schemes all

represent successive improvements at the beginning of the
calculations, the alternating and the M=3 schemes rap-
idly degrade, eventually performing no better or even

worse than using no extrapolation at all (see Fig. 2).
Analysis of the convergence in the conjugate-gradient
iterative solution for the wave functions confirms that the
cause of the slowing is a reduction in the overall conver-
gence rate. The initial benefit of these higher-order ex-
trapolation schemes always will be lost to this instability
unless a new iterative solution for the electronic system is

Re g

able to relax the "difficult" modes more efficiently so that
their convergence factors move into the range of stability.

Analytic continuation of the total en-ergy func
tional. —One class of dificult wave-function errors that
we must learn to relax more efficiently are those which
require simultaneous self-consistent adjustment of all the
wave functions. Because the method of conjugate gra-
dients is not a constrained minimization procedure, cur-
rent application of these techniques to the electronic
problem either simply ignore the effect on the gradients
of the "forces of constraint" which keep the wave func-
tions orthonormal [4] or they treat these elTects properly
hut at the cost of cycling through the wave functions indi-
vidually and minimizing each wave function in the sub-
space orthogonal to all the other states which are then
held fixed [3]. In either case those modes in which the
wave functions must change in response to one another
are treated poorly. %e see evidence of this in our calcu-
lations of the latter class, where the wave functions con-
verge much more rapidly in their restricted subspaces
(with f, =0.3) than does the system as a whole after
complete cycles through the bands (with an overall

f=0.75). This effect is also sometimes seen in systems
with ionic disorder. To speed the electronic relaxation in

general and eliminate the instabilities which keep us from
a very efficient dynamics scheme, we now present
method for relaxing the orthonormality constraints on the
wave functions. Because traditional local-density approx-
imation (LDA) functionals are physically meaningless
unless evaluated on an orthonormal set of wave functions,
to give meaningful results we must introduce a new ener-

gy functional which is the composition of a traditional
LDA functional with a second functional which carries a
set of nonorthonormal wave functions to an orthonormal
set. The condition for the practicality of this scheme is

f =-l/7

g= (0,0)

f=o

tI)

0

FIG. 1. Behavior of the characteristic roots of the M=2
(thick curves) and the M =3 (thin curves) in the complex plane
in relation to the unit circle (dots) as a function of the parame-
ter —l &f, & 1. Note that both roots of the M =2 kernel al-
ways lay inside the unit circle and modes with all f; s are there-
fore stable. For M =3, however, those modes with f, & ——,

' or
f,) —,

'
have roots outside the unit circle and therefore will show

exponential growth until they dominate the convergence of the
entire system.
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FIG. 2. Average CPU consumption (expressed in terms ol

the number of hours required to simulate I ps on a Cray YMP
supercomputer) as a function of atomic iteration number for
the simple nonextrapolatory scheme (M =1), the M =2, the al-

ternating (labeled "A"), and the M =3 schemes when relaxing
wave functions using a traditional LDA energy functional
{dashed lines} and our new continued functional (solid lines).
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that the gradient of the resulting composite functional be
simple to evaluate.

This condition is met when we consider functionals car-
rying a nonorthonormal set of wave functions [p„k] to an

orthonormal set [/ttnk j sPanning the same subsPace T. he

most general such transformation is of the form

-i(p„-p )
[z'R[M]z]. =[z'Mz]„' (10)

where M is an arbitrary matrix, and [Z,p] and [W,tu] re-

sult from diagonalizing B and U,

k =Akpk:e Uk Qk, (4) ZPZ~—=B,
~here the two sets of IV wave functions at each k point,
[///„k] and [p„k], have been collected into the column vec-

tors 1//k and pk, Bk is an arbitrary N&&N Hermitian ma-

trix, and Uk is the N xN matrix with elements

(5)

There are several useful choices for the Bk, which just
parametrize the arbitrary unitary transformation Vk

=e' ' that we are free to apply once multiplication by

Uk
' has given us orthonormal wave functions. First,

the [[Bk]„]may be treated as a set of parameters to be

optimized on an equal footing along with the /t/„k, which

speeds convergence over holding the Bk fixed by a factor
of 2 in systems with variable fillings, in which the rota-

tions Vk are then physically relevant. The Bk also may

be chosen to diagonalize the subspace Hamiltonian, giv-

ing manifest treatment of the Kohn-Sham eigenstates,
which will be a great advantage in metals. Finally, in

cases like our semiconductor calculations where the

fillings are constant and the Vk irrelevant, simply holding

Bk —=0 is most convenient. The new composite functional

is now just

E([gk]~ [Qk] ) ELDA([tl'kAk (tl'k~tl'k)]~ [Ak(tl'k~Qk)/I/k] ) ~

(6)

where ELDA([l//k], [1//k]) is the traditional LDA energy
functional expressed in terms of the wave functions and

their complex conjugates. The required analytic expres-
sions for the gradients are simply

A A

t =Ak FkPkHLDA/t//k Q[Vk [Hk, Fk] Vk] Vk 1/rk )

k

= —(R[[Hk, Fk]])„m,
& Bk* nm

where Fk is a diagonal matrix loaded with the filling fac-
tors for each band n, Pk is the projection operator

Pk = 1 X I /ttnk)(/t/nk I

HLDA is the Kohn-Sham Hamiltonian operator construct-
ed as usual from the orthonormal wave functions,

[Hk]nm —= ( /i/lmH kALI Dy )nkis the subsPace Hamiltonian

matrix, and Q and R are matrix to matrix functions
defined by the relations

[w'g [M] w]„=[w'Mw]„
pn +pm

A test of the prowess of the new dynamics tech

nique. —To solve the electronic problem we now release
the orthonormality constraints and simply apply the stan-
dard method of conjugate gradients [7] to the energy
functional (6) with the preconditioning suggested by
Teter, Payne, and Allan [3]. Calculations for fixed ionic
coordinates with the wave functions from (I) which

slowed the M=3 simulations confirm that the new tech-

nique does indeed rapidly relax the previously difficult

modes and can speed convergence by at least a factor
of 3. When using the continued functional to perform
dynamical calculations, we find that it is most efficient to
input the orthonormal "images" from (4) into the extrap-
olation (1). Note that there are no longer any technical
issues in wave-function extrapolation resulting from non-

orthonormality of the extrapolated wave functions. To
demonstrate the practicality of the new technique for
long-length-scale systems, we have performed tests using

the system described in [5] below, which is well over 50 A

long. Though the M=3 scheme is still unstable (due
to the presence of another, yet undetermined, set of
"difficult" modes), the more robust alternating scheme is

now stabilized, and requires only 44 CPU hours per simu-

lated picosecond (Fig. 2). Given that this calculation is

carried out with fully complex wave functions at four k

points in the Brillouin zone and with both p and d nonlo-

cal corrections, this is very competitive even with the
CPU requirements of traditional combined-dynamics
simulations, which are carried out in systems with much

smaller length scales.
Finally, as a rigorous test of the quality of the trajec-

tories that this procedure generates, even at these extend-
ed length scales, we have determined the phonon spec-
trum of Si through the velocity-velocity autocorrelation
function of the ions in our calculation. Although there
are methods for mapping out the phonon spectrum over
the full Brillouin zone with calculations on a single prim-
itive unit cell [8-11], calculating the phonon spectrum

dynamically provides a simple, direct test of the quality
of our molecular-dynamics technique in the highly (120)
dimensional phase space of our supercell. After project-
ing the ionic displacements from our calculation onto the
allowed k states and the known purely longitudinal and

transverse polarization vectors, we then determine the
frequencies present in the time autocorrelation functions
of these spatial Fourier coeQcients with the maximum

entropy method (MEM) [12], a procedure we have dis-

cussed in detail elsewhere [5]. Taking the frequencies of
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may be useful in other ab initio methods for fermionic
systems involving orthonorrnal orbitals, such as config-
uration-interaction techniques.
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the peak values of the resulting spectra, we compare our
parameter-free results with the experimentally measured
phonon frequencies [13,14] in Fig. 3 and find excellent
agreement [15]. Our spectra clearly and accurately
reproduce not only the celebrated []attening of the lower
acoustic (TA) modes as one moves away from the I" point
but also the delicate splitting of the optic modes along A.
Note that the calculation also accurately reproduces the
lowest-frequency acoustic mode despite its period of near-
ly I ps and manifests the delicate splitting of the optic
modes, which beat against each other with even longer
periods. This illustrates that our dynamics technique pro-
duces reliable ionic trajectories even over periods of pi-
coseconds and is thus very precise.

Conclusions. —We have clarified several stability issues
which will be of use to the general computational physics
community in the problem of using iterative refinement
methods to solve for the state of a system as a function of
a continuously varying external parameter. This led to
an understanding of the problem which prompted us to
develop a technique for continuing traditional energy
functionals into the space of nonorthonormal wave func-
tions. These new functionals not only have greatly im-

proved the performance of our conjugate-gradient-based
ab initio molecular-dynamics scheme, which we have
proven with a rigorous test in a system well over 50 A in

length, but also may be useful for practitioners of other
techniques. The possibility of using these functionals as
the basis for a Car-Parrinello scheme for metals where
the Kohn-Sham eigenstates are obtained manifestly is in-
triguing. Finally, relieving the orthonormality constraints

x z r r z x
FIG. 3. Phonon spectrum as determined from maximum

peak values of MEM fits. These values are completely ab initio
with no free parameters. The left-hand panel displays experi-
mental data [13,14], and the right-hand panel displays frequen-
cies from our dynamically determined trajectories.

[I] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471
(1985).

[2] K. D. Brommer, M. Needels, B. E. Larson, and J. D.
Jounnopoulos, Phys. Rev. Lett. 68, 1355 (1992).

[3] M. Teter, M. Payne, and D. Allan, Phys. Rev. B 40,
12255 (1989).

[4) M. J. Gillan, J. Phys. Condens. Matter I, 689 (1989).
[5] To follow the dynamics of a 53.8-A-Iong orthogonal su-

percell of forty silicon atoms at a time step of one-
twentieth the optic-phonon period using this method re-
quires —150 CPU hours per simulated picosecond on a

Cray YMP supercomputer. The remaining parameters of'

this test calculation are the same as those for the calcula-
tion described by T. A. Arias, M. C. Payne, and 3. D.
Jounnopoulos, Phys. Rev. B 45, 1538 (1992).

[6] Previously, we presented a refined choice for the multilin-
ear coefficients which we have employed in the calcula-
tions in the present work [5]. In practice, however, the
coefficients fluctuate narrowly about the binomial values
in (I).

[7] M. R. Hestenes and E. Stiefel, J. Res. Natl. Bur. Stand.
49, 409 (1952).

[8] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett.
58, 1861 (1987).

[91 X. Gonze and J.-P. Vigneron, Phys. Rev. B 39, 13120
(1989).

[10] P. Giannozzi and S. de Gironceli, Phys. Rev. B 43, 7231
(1991).

[11] D. Kh. Blat, N. E. Zein, and V. I. Zinenko, J. Phys. Con-
dens. Matter 3, 5515 (1991).

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes: The Art of Scientific'
Computing (Cambridge Univ. Press, Cambridge, Eng-
land, 1989), p. 431.

[13] G. Dolling, Inelastic Scattering of Neutrons in Solids and
Liquids (IAEA, Trieste, 1963), Vol. II, p. 37.

[14] G. Nilsson and G. Nelin, Phys. Rev. B 6, 3777 (1972),
[15] While in near perfect agreement with our frozen-phonon

calculations, our dynamically determined frequencies are
in somewhat worse agreement with experiment due to the
relatively low plane-wave cutoff of 8 Ry. For instance,
frozen-phonon frequencies for the A'To mode yield 13.21,
13.96, and 14.13 THz at cutoffs of 8, 16, and 32 Ry, re-

spectively, while our dynamic results give 13.15 THz and
the experimental value is 13.90 THz.

1080


