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Spontaneous Transition from Flat to Spherical Solitons
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This Letter reports on numerical simulations showing exact, flat soliton solutions to a physical equa-
tion (that of Zakharov and Kuznetsov) breaking up into spherical solitons. Depending on the size of the
box in which calculations are performed, the breakup can be either direct or via an intermediate, cylin-
drical soliton stage.
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Solitons are of great interest nowadays. They are
found in many different branches of physics. Solitons
often have surprising stability properties, such as emerg-
ing unscathed from collisions. Solitons having flat, cylin-
drical, or spherical symmetries are well known. One line
of investigation, having a huge literature by now, is that
of single- and multiple-soliton behavior within a given
class. Thus, for example, much is known about flat-fiat
soliton collisions. A difl'erent problem, less amenable to
theoretical analysis, is that of the creation of solitons of
one symmetry from those of another. An example of this
is the transition from ftat to cylindrical solitons.

In this paper we will address the extended problem of
the breakup of flat solitons to produce cylindrical and/or
spherical solitons, as well as of cylindrical solitons to pro-
duce spherical ones. Whereas the initial stages of break-
up can sometimes be described analytically, the entire
transition from one kind of structure to another cannot
(as far as we can see). Here we report some results of
numerical investigations, based on a simple model equa-
tion often used to describe the dynamics of a strongly
magnetized, two-component plasma (completely ionized
gas). We find that flat solitons can indeed break up, ei-
ther directly into spherical solitons or else first into cylin-
drical and then into spherical solitons.

A change of structure in a plasma medium has of
course been considered before, largely under the heading
of collapse. Here, however, we will concentrate on transi-
tions from one ordered structure (a one- or two-di-
mensional soliton) to another (a two- or three-dimen-
sional soliton).

In a three-dimensional, unmagnetized plasma, small-
amplitude and flat ion acoustic solitons are stable [1-3].
Their existence has been confirmed experimentally [4].
However, a strong external magnetic field will destabilize
these entities. A good model for studying this destabili-
zation and its consequences is furnished by the equation
formulated by Zakharov and Kuznetsov [5], which was
investigated in some detail in Ref. [6].

The Zakharov-Kuznetsov (ZK) equation for ion acous-
tic waves and solitons propagating along a very strong
external and uniform magnetic field is, for a two-
component plasma [6],

n, +nn„+(hn)„=0,
6 =|1„+8„'+tl,'.

Here n is the normalized deviation of the ion density from
the average. Exact solitonlike solutions exist in one, two,
and three space dimensions. They depend on the in-

dependent variables through the combinations

x ct, p = [(x—ct)'—+y'] 'l',

r = [(x ct ) '+y—'+z'] 't',

respectively, where

hn —(c —n/2)n =0,

(1)
(2)

and 6 is 8„,p '8~8~, and r B„r28„for the three cases.
Equation (3) is an ordinary differential equation and is

easily solved numerically to give soliton solutions with n

decreasing monotonically away from the center. Only for
the one-dimensional case can the soliton solution be writ-
ten out explicitly:

n =3csech [c 't (x ct —xo)/2] —.

The flat soliton (4) is unstable with respect to nonaligned
perturbations. This is shown in Refs. [6,7]. The cylindri-
cal soliton is in turn unstable with respect to axial pertur-
bations [8]. As suggested by this logical progression, the
spherical soliton, having no fourth space dimension to be
unstable in, is in fact stable. A limited mathematical in-
dication of this last statement is seen by looking at dila-
tions that conserve momentum

n~ A. n, r~ A.r.
The energy conserved by (1) is now, for the spherical sol-
itonlike solutions,

E(A,r, k, n) =I~/3X —I2/A.

l~ =tr& n r dr, I2=ttJ" n, r dr.

(6)

(7)

p=z nr dr

(in this model, normalized n and v are equal and the in-
tegrand could be written in the more familiar form nv).
Now take the following scaling, consistent with momen-
tum conservation:
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FIG. l. Consecutive stages in the breakup of a flat soliton when simulations are confined to a box of two equal sides. The coordi-
nate system is moving with the velocity c of the initial soliton. Further details are explained in the text.

Thus

8E/W, = I /X +4I /Xs— (8)

This will have a minimum for the real soliton at X =1 if
I~/I2=4. Multiplication of (3) by r n and integration
over all space, followed by the same procedure using r n,
and then subtraction of the second resulting equation
from the first times 2, does give Ji =4I2.

Spherical solitons are in fact stable with respect to all
small-amplitude perturbations, not just dilations [E. In-
feld and G. Rowlands (unpublished)]. This will be con-
firmed numerically in what follows.

The picture indicated by the above considerations is of
a flat soliton in three dimensions breaking up either into
an array of spherical solitons directly or else into a cylin-
drical array that will then in turn break up into a spheri-
cal array. This is what we expect in three dimensions.

In the two-dimensional picture, fiat solitons break up
into a stable cylindrical array and this was demonstrated
a little while ago [9], when questions about the three-
dimensional dynamics were posed. Our numerical results
were later repeated and confirmed by others [10].

In our first simulation, Fig. 1, a flat soliton is perturbed

by background noise and both perpendicular directions
are treated on an equal footing (for the moment just ig-
nore the traces at the bottom of each frame). The value
of c in (4) is taken to be 0.5, such that n,„=1.5. The
gray surfaces are surfaces of n =0.8, just two parallel
planes for the initial condition expressed by (4) with
t=0. The noise is of order 10 . The two sides of the
box are long enough to include maximum-growth-rate
perturbations as described in Ref. [6], Chap. 8. Not
surprisingly, the flat soliton breaks up into a spherical ar-
ray. The spherical solitons created at later times lag
behind the "senior" ones. Shapes and velocities fit spher-
ical solutions of (3). The amplitudes of the resulting soli-
tons are —10. The spherical solitons have been moni-
tored for long times and are indeed stable for these times.

Figure 2 shows the results of a simulation in which the
box enclosing the system has uneven sides perpendicular
to the motion of the flat soliton. Here the height has been

shortened. Maximum-growth-rate perturbations are thus
eliminated and the instability grows more rapidly in the y
than in the z direction. Cylindrical solitons are found.
These gradually break up into spheres.

The logical thing to do now is to bring the height down
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FIG, 2. As in Fig. 1, but with the height of the box considerably shortened.

further in the hope of stabilizing the newly found cylin-
drical solitons completely. This was the idea behind Fig.
3 in which the threshold is below that for instability of a
flat soliton. Indeed the cylindrical solitons last out the
simulation. However, when the time was prolonged
several times, the cylindrical solitons did break up into
spherical arrays. This would suggest that the critical
wavelength for unstable perturbations against cylindrical
solitons is much smaller than for flat solitons, a result we

did not anticipate. To date we do not know the formula
for the former critical wavelength. However, we can con-
clude that the cylinders would have to be very flat for sta-
bility. They would really be disks rather than cylinders.

The illustrations at the bottom of each frame in the
figures represent density as a function of x and y for
slices through the upper part of the box, very near the
top. In this representation both cylinders and spheres ap-
pear as "icicles." We see that densities inside spherical
solitons tend to be much higher than inside the other two
kinds of solitons.

All in all, there seem to be two main possible scenarios
for flat solitons in three dimensions: breakup according
to the rule

The third scenario we expected,

flat soliton cylindrical solitons (stable),

seems doubtful.
This paper completely answers the questions posed by

two of the present authors in Ref. [9] about the breakup
of flat solitons. The behavior described here is generic
and other solitons have been looked at [11].

In numerical simulations we assume periodic boundary
conditions in all three dimensions but we keep the boun-
daries remote enough so that they do not aA'ect the solu-
tion significantly. We use the Fourier-Galerkin spectral
method for spatial discretization [12]; alternatively, the
initial condition is transformed to Fourier space and tem-
poral evolution is implemented in terms of the expansion
coefficients. We advance in time the Fourier coefficients
of the initial condition. Our code is dealiased because we

have found that an aliasing instability develops in simula-
tions with a stationary structure (soliton in moving coor-
dinate system). The time discretization scheme uses the
implicit midpoint rule [13],

u"+' = u "+r F((u"+u"+')/2),

or

flat soliton spherical solitons

flat soliton cylindrical solitons,

each cylindrical soliton spherical solitons .

where F(u) is the right-hand side of the diff'erential equa-
tion written in the form u, =F(u) and r is the time step.
The nonlinear term of the ZK equation is treated itera-
tively with preconditioning given by an explicit rule.

The accuracy of the results may be measured by the
maximum relative errors in the three conserved quanti-
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FIG. 3. As above, but with the height of the box further shortened.

ties: mass fnd x, the x component of the momentum
fn d x, and the energy f( —,

'
n —n„—n~

—n, )d x. The
errors are (10,6 x 10, and 3 x 10, respectively.

The analysis of the results and the figures were
prepared using AVS (Application Visualization System)
on the Stardent 3040 computer. The simulations were
performed on the same computer using a hand-coded
parallelized fast Fourier transform routine. The CPU
time of a run varied from 20 h (cubic box) to 100 h ([]at
box). (This time can probably be decreased signi-
ficantly. )

The above considerations are distinct from the problem
of the collapse of isolated wave packets. For Langmuir
turbulent collapse, see Refs. [14-16]. The last reference
treats the case of collapse into pancake-shaped objects.
For this special case see also Ref. [17]. For recent devel-
opments on Langmuir and other types of collapse, see
Refs. [17,18] in particular the last paper.

Here we have considered the transition from one or-
dered structure (a one-dimensional soliton) to another or-
dered structure (two- or three-dimensional structure).
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