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Theory of Anomalous Transport in High-Aspect-Ratio Toroidal Helical Plasmas
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A theoretical model of the anomalous transport in torsatron-heliotron plasmas is developed, based on
the current-diAusive interchange instability which is destabilized due to the averaged magnetic hill near
the edge. An analytic formula of the transport coef5cient is derived. This model explains the large edge
transport, the power degradation and energy confinement scaling la~, and the enhanced heat-pulse
thermal conduction.

PACS numbers: 52.25.Fi, 52.35.Qz, 52.55.Hc, 52.55.Pi

Much work has recently been done on the plasma
transport across the magnetic surface in toroidal plasmas.
Studies were made on plasmas in stellarators with the

magnetic shear and hill, such as torsatron-heliotron de-

vices [1-3]. These plasmas, in which the pressure gra-
dient plays the dominant role in exciting instabilities,

may yield knowledge on anomalous transport comple-
mentary to tokamaks. Experiments have shown that (I)
the energy confinement time iq degrades with power
[4-7]. By a comparison study on plasmas of this kind, a

scaling law for rF. has been proposed [5]. Detailed stud-

ies have shown that (II) the eA'ective thermal conductivi-

ty g,p increases with temperature for a given minor ra-

dius r [8]; (III) the profile of g, tr for a given heating

power, however, is an increasing function of r [7,8], and a

simple form like g,tra: T, /B is not valid. It is also
known that (IV) the thermal transport coefficient that is

determined by the heat-pulse propagation, gHp, is larger
than g, tr [9]. These results have similarities and dif-

ferences compared to those for tokamaks, and the ex-

planation of these will provide a key to understanding the
anomalous transport in toroidal plasmas.

The interchange mode [10] has been thought to be a
candidate to explain the anomalous transport in

torsatron-heliotron plasmas. This mode can be destabi-
lized, for instance, in the presence of finite resistivity q.
Much effort has been directed to studying the anomalous
transport driven by the resistive interchange mode
[11-14]. The theoretical methods are the mixing-length
model [15], scale-invariance method [16], and one/two-

point renormalization technique [17]. The diA'erent

methods have given the same result on g,& from the phys-
ics point of view (the differences appear only in a numeri-
cal constant) [18]. In spite of these intensive studies, the
anomalous transport, characterized by (I)-IIV), remains
unexp1ained.

We have recently investigated the eAects of transport
coefticients on the interchange instability, such as thermal
difrusivity g, viscosity v, and especially, the current
diA'usivity k [19]. (The current diAusivity comes from
the electron viscosity, and Ohm's law is written as [20]
E+vx8 =tlj —AV j.) The important role of the current

diffusivity was found there: Below the critical beta value
against the global MHD mode, the microscopic inter-
change mode is destabilized through the current dif-
fusivity, not by the resistivity.

In this Letter we derive the anomalous transport
coe5cient in the high-aspect-ratio stellarator with mag-
netic shear and magnetic hill (such as a heliotron device),
based on the microscopic current-diffusive interchange
mode (abbreviated by "X mode"). We find g, tr

ix: (dp/dp) 8, v~/R (p is the ratio of plasma pressure to
magnetic pressure; p, normalized minor radius r/a; a,
plasma minor radius; B„collisionless skin depth; v~,
Alfven velocity; R, major radius). This result is con-
sistent with the experimental knowledge (1)-(IV).

We use a model equation based on the reduced set of
equations for stellarators [21]. The cylindrical model
[coordinates (r, 0,z)] is employed in order to look for
analytical insight for the high-aspect-ratio limit. We also
consider the case of zero equilibrium current. The model
equations consist of Ohm's law, the equation of motion,
and the energy balance equation, as are explicitly given in

Ref. [19]. We use the picture of mean-field theory; we

analyze the growth rate and mode structure of the k
mode by keeping g, v, l, and g. The instability-driven
transport coefficient (derived by the mixing-length
theory) is equated to the one which is used for stability
analysis.

We solve the eigenvalue equation by Fourier transfor-
mation. The parallel derivative is approximated by k~]

=kesx [kg=m/pi, x =p —pi, m poloidal mode number,

pi rational surface, s =pie'(pi), and e rotational trans-
form], since we study the microscopic mode which is lo-
calized to the rational surface. The variable is changed
from x tok as

u(x) =exp[yt+imO —im'z/R]„u(k) exp(ikx)dk,

where u is the perturbed stream function, y is the growth

rate, and m' is the toroidal mode number. Eliminating

the current and pressure perturbations from the set of
equations, and assuming an electrostatic perturbation, we

have the eigenvalue equation for y in the k space as [19]
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where k& =kg+k, I/L=kes, D0= —P00'p,'q/2e, p,q

p0(p)/p0(0) (p0 being the equilibrium pressure),
a=a/R, and 0' is approximately given as 0'
=E (/U/l)p (4 p ) (N is the toroidal pitch number and I
is the multipolarity). The term D0 denotes the drive by
the pressure gradient with bad curvature The transport
coefficients are normalized as g =gr~~/a,
j=r/r~~/boa, v=vr~~/a, K=kr~~/p0a, and the time
is normalized as y=yr~p, where r~&=R(@0m;n;)' /80,

n; is the ion density, m; is the ion mass, and 80 is the
equilibrium magnetic field.

Equation (1) is solved by the Rayleigh-Ritz method.
Writing Eq. (1) as Xu =0, the functional %[u] is defined
as W[u] =f —u/udk/f u—dk. The test function u
=exp( —a k /2) is employed. The equations R[u] =0
and 8%[u]/la=0 determine the growth rate y and a.
The value a is the typical radial extent of the mode. The
transport coef5cient g is given by use of the mixing-length
model [1S]as

z=ya

where a numerical coefficient of order unity is undeter-
mined. The Rayleigh quotient % is obtained as

'a jy —2yiexp(y2) erfc(y)]+2D0k&2('exp((2) erfc(() —yke [I+ I/2y ] —vke []+I/y'+3/4y ], (3)

where y =a2k//~, (=a2(y/g+ke ), and erfc(y)
=j exp( —v 2)dv. (The resistivity contribution is small

if rT ( gke2. This condition is satisfied, as shown a pos-
teriori, and ri is neglected. ) In order to obtain physics in-

sight, we obtain the analytic expression. In the following,

we assume that g= v, since the electrostatic E~a trans-

port is studied. [It is straightforward to study the general

case of arbitrary ratio of v/g (Prandtl number), but this

does not change the result qualitatively. )

In the large-akim limit, the asymptotic limit of the erfc
function is used. Taking the leading term in ake (note
g=v=ya ), the eigenvalue equation Atu] =8%[u]/Ba
=0 gives the growth rate and the radial extent a of the

fast interchange mode [22] as y =D0/ /(ake) and

a =[X(y+2vk )]'//s. For the small-ake limit, the

Taylor expansion of R is used. The first-order term is

written as y=(J8/S)akgD0/. From these results, the

largest growth rate is given for the poloidal mode number

satisfying kea-1. For such a mode, we have the esti-

mate

D 1/2

2 —
1 (3Q) I/2) i/2

Substituting Eq. (4) into Eq. (2), we have

(4a)

(4b)

D 3/2 (S)

The value of k is related to the electron viscosity p, as

[2()] g/p, = (8,/a) 2. Since the relation p, /g- I holds for
electrostatic- and magnetic-turbulence-driven transport

[23], we use the relation K/g-(b, /a) . Noting the nor-

malization, the explicit form of g is finally obtained as

g =F(p) [dP/dp] b, UgR (6a)

F(p) = 3 N 1 d
,2' 2I 2 dp

3/P

(6b)

where F(p) is the geometry-dependent numerical coef-
ficient

g 0.28 0.8n 0.6a 2RP —0.6(F)0.4 (8)

~here A is the ion mass ratio, P is the heating power, and
(F) is the average of F near the boundary [24]. A weak
but positive dependence on the mass ratio is obtained.
We also find that the improvement of the confinement by
increasing the shear (s 2 term in F) is almost offset by
the increment of the magnetic hill [[N(p ~)'] /

p term
in F]. This result explains the fact that, from the com-
parison between different devices, rE seems to depend
weakly on the (rotational transform)/shear. (F) ' de-
pends weakly on geometrical parameters. The predicted
indices to 8, n, a, R, and P, as a ~hole, are consistent
with the scaling law [Sl.

Third, the formula g includes the radial dependence
(p'/n) /, not T /2, and predicts a large transport near the
edge. Since the pressure gradient is substantial near the
edge (even though the pressure itself must be small) and
n(r)/n(0) is decreasing towards the edge, the anomalous
transport can be large near the edge. With this radial
dependence and that of F(p), g is larger near the edge, as

The ratio between the relative amplitude of density and
potential fluctuations, n/n and ep/T, can be derived from
Eq. (4). Since the convective change dominates in n, we
have the relation n/n =(co4,/y)ep/T, where co+ is the drift
frequency. Tke&jeB (x'=I|/njnl and we assume that T,
=T&). Using the condition k@a= 1 and the expressions
for y and a, we have

n/n = [3.1sD0 'irRp(a))ep/T.

This gives the result that the density fluctuation is usually
smaller than the potential Auctuation.

We now discuss what is predicted from this model,
comparing to the experimental results (I)-(IU).

First, the dimensional dependence of g is such that
[g] cx: [T]' /[Rl [8] and is independent of that of densi-
ty. Equation (6) predicts g of the experimental range
(see Fig. 1). Second, the point-model analysis gives the
energy transport scaling law as
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FIG. 1. Example of the prediction of Eq. (6) in the model of
Heliotron E [+(p) =co+ 1.6+i p, a =0.1, 8 =2 T, T(0) =500 eV,
n(0) =5&&10' m ]. Profiles are chosen such that p,q(p)
=1+6—p2 and n(p)/n(0) =(1+5—p )'~ (6=0.05). The
thick dashed line indicates 4& formula (6). The shaded region
shows the range of experimental data, which is quoted from
Refs. [18,25].

is shown in Fig. 1.
Fourth, the heat-pulse propagation time is faster than

For the case where )VT/T))& ~Vn/n( holds, we ob-
tain a simple relation. Writing the heat Aux q =qo+q
and VT=VTO+VT, we have q =2.5g,ffVT, where g,g is

the ratio between qo and ~VTo~ (i.e., g in this Letter).
From this relation, we see that the heat transport
coefficient, which is predicted for the heat-pulse propaga-
tion, gHp, satisfies the relation

gHP 2 5geff' (9)

Fifth, the relative perturbation of density is smaller
than that of the potential. We have Do-60x~aP(0) and
s-4 for the Heliotron-E plasma [4], which gives n/n
—[2(&/xp) P(a)/P(0) leg/T (x~ = ~VP/P ~

). The value of
the expression in square brackets is of the order of one-
tenth. Fluctuation measurements in high-power-heating
experiments have shown that n/n is smaller than ep/T
[26,27], confirming our model. This relation also sug-

gests that (n/n)/(ep/T) increases as the pressure profile
becomes broader.

These predictions are consistent with experimental re-
sults including (I)-(IV).

In summary, we have developed a new model for the
anomalous transport in the toroidal helical plasma with

magnetic hill and magnetic shear and presented an ana-
lytic formula. The microscopic current-diff'usive inter-

change mode (k mode) is analyzed by keeping the trans-
port coefficients g, v, and A, . A mixing-length estimate is
used to derive the transport coefficient from the mode
growth rate and structure. Mean-field theory is employed

so that the obtained transport coefficient is equated with
the given value of g. By this theoretical analysis we de-
rived the formula of the anomalous transport coefficient.
The mode analysis gives that the normalized density per-
turbation is usually smaller than the normalized potential
fluctuation. The comparison with experimental results
shows that the derived formula recovers the scaling law,
radial shape of g, diAerence between gHp and g,g, and the
relation between the density and potential perturbations.
This formula also explains the weak efI'ects of ion mass
and rotational transform on rF, which are observed in ex-
periments.

It should be noted that Eq. (6) is derived apart from a
numerical coefficient of the order of unity. The previous
analyses on the resistive interchange mode by the two-

point renormalization method have shown a factor of 5

enhancement over the mixing-length estimate [11,13].
Equation (6) will be changed by a factor like that, but
the physical dependences of g will not be altered.

We would like to note the approximations in relating g
in Eq. (1) to the global transport coefficient. The
coefficients gk&, pk&, and Xk& are introduced for the
small-scale perturbation in Eq. (1). They affect the
decorrelation rates of the perturbation part of the energy,
momentum, and current. Following the Dupree renor-
malization [17], the terms g, p, and k are treated as in-

dependent of k&, and are equated to the values which are
obtained by the stability analysis. A renormalization
study on g has been made for instance in Ref. [11]. The
expression of g, Eq. (6), which is the approximation in

the mixing-length theory, holds for the global transport
process.

Recent theoretical study has shown that subcritical tur-
bulence can be self-sustaining in a shear-stabilized plas-
ma [28]. Our study shows that this is also the case for
high-aspect-ratio torsatron-heliotron plasmas through
enhancement of the current diAusivity. In this Letter, the
analytical expression of the transport coefficient is ob-
tained as well.

The importance of the current diA'usivity is shown.
The resistivity is negligible if g &A, kz holds. This condi-
tion is rewritten by using the result for a (= I/kp) as

g/rl ) (a/6, ) rl, Do~ . This condition is usually satisfied
for experimental plasmas for which transport analyses are
applied.

We compare Eq. (6) to the formula derived by
Ohkawa for magnetic turbulence [29]. Compared to the
Ohkawa formula, g —8, v, /R, Eq. (6) has an additional
dependence on p. In our model, the current diffusion is

proportional to B„so that a similar dependence on 6', is

obtained, though the perturbation is assumed to be elec-
trostatic.

The stellarator expansion is used here to study the case
of the high-aspect-ratio limit. The important role of the
ballooning mode has been pointed out [30] in the system
with lower aspect ratio, for which three-dimensional cal-
culations are required. Our study suggests the impor-
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tance of the current diffusivity in such a case, and future
study is necessary.
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