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Burgers Vector Content of an Interfacial Ledge
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A new way of investigating the elastic field around a ledge of a faceted interface is proposed for crys-
talline materials. The length and/or angular misfits along two adjacent facets are accommodated by
slightly deforming the atomic structural units with an appropriate distribution of translation dislocations.
The Burgers vector content of the ledge is not defined as usual from a circuit crossing the interface
twice, a method which proves to be sometimes misleading. An example treats, at the atomic scale, an
unusual ledge of the interface TiA1/Ti3A1.

PACS numbers: 61.70.Ga

In solid-state transformations, linear deformation
singularities along crystalline interfaces play a crucial
role. Much effort has been devoted to their characteriza-
tion by conventional or high-resolution transmission elec-
tron microscopy (CTEM or HRTEM) (e.g. , [1]), be-
cause of their importance in solid-state physics and rna-

terials science. For example, interface strain may
dramatically inliuence the electronic properties of lat-
tice-matched III-V semiconductor superlattices [2]; the
density of interfacial ledges, or facets, may influence con-
siderably the measured barrier height on p-type Si [3];
when interfacial ledges move, under a stress or tempera-
ture change, a phase transformation occurs [4]; gliding
matrix dislocations generally leave ledges when cutting
interfaces; etc.

Although some interfacial singularities can now be ob-
served at the atomic scale thanks to a new generation of
electron microscopes, it is not yet possible, in most cases,
to describe their associated elastic deformation fields.
This is a challenge for scientists and has motivated this
Letter, in which an analytical solution is proposed for an

interfacial ledge separating two parallel facets. The
present di%culties in estimating the deformation field

around a ledge, and consequently its related Burgers vec-
tor content (BVC), were faced first by Howe, Dahmen,
and Gronsky [4], when treating ledges at Al/A12Ag inter-

faces observed in HRTEM: Does a translation disloca-
tion as defined in [5] suffice to describe the elastic field of
a ledge? In this case, how does one determine the
Burgers vector from which the entire deformation field

can be derived? %here should the theoretical dislocation
core be placed when treating a ledge? How should one
draw a circuit around the ledge using an HRTEM image,
from which the BVC of the ledge can uniquely be ob-
tained? In fact, the solution presented in [4] does not ac-
count for any length or angular interfacial misfit since the
authors used a translation dislocation with a core arbi-

trarily chosen at a corner of a facet. Interestingly

enough, these authors questioned the meaning of a circuit
crossing the interface twice to distinguish between possi-
ble BVC's.

Our method to treat the problem is developed below.
First, a short description of the classical interpretations of
interfacial singularities and the associated terminology
will be given.

For twin boundaries in cubic crystals, it has been
shown, using CTEM, that many singularities have defor-
mation fields similar to those of essentially isolated
translation dislocations if they are suSciently far from
each other (e.g. , [6]). The attached Burgers vectors were
first identified as part of the displacement shift complete
(DSC) lattice defined as the coarsest common lattice that
contains both crystal lattices as subsets [7,8]. The DSC
lattice usually serves as a reference lattice to draw
Burgers circuits across the interface in the same manner
that a crystal lattice is used for matrix dislocations [7,9].
Later, it was observed by CTEM that a deformation
singularity can sometimes separate two structurally dif-
ferent interfacial domains [10]. Each domain has its own

atomic structure, denoted as structural units (SU's) in

[11],which repeat with a short period. Such a singularity
was interpreted as a translation dislocation involving a
DSC vector plus a rigid-body translation (e.g. , [10,12]).
More recently, new periodic singularities were observed
in gold by HRTEM [13], which do not behave as DSC
dislocations and still separate similar SU's. For an inter-
face separating noncubic crystals, there are other
difticulties. The most dramatic one is the fact that the
DSC lattice cannot always be determined uniquely

[8,14], which makes the determination of a Burgers vec-

tor by using a circuit passing twice across the interface
problematic. Since a unique displacement field is ob-

served, it is not acceptable to continue with the DSC con-

cept only, despite its widespread use in the literature.
Our analysis of the displacement field around a ledge is

built from elemental ideas: (i) The misregistry of two
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FIG. 1. Schematic representation of the cut-and-paste pro-
cess leading to the surrounding displacement field around the
interfacial ledge STEP, separating crystals + and —.The
height TE of the ledge has been exaggerated relative to the
widths of the facets: (a) deformed state; (b) after cut, the free
surfaces S+T+E+P+ and S T E P are generated; (c)
elastic field in terms of a continuous distribution of translation
dislocations.

lattices meeting along an interfacial facet has a linear
dependence with coordinates along the facet and can
therefore be accommodated by a continuous distribution
of infinitesimal dislocations over the facet [15]; (ii) the
geometrical need to reconstruct the same SU's along each
facet implies, in general, the presence of a finite transla-
tion dislocation located at each of the two ends of the
facet [16]; (iii) since a Burgers vector has meaning in an
elastic continuum [5], a circuit drawn step by step on an
HRTEM image, crossing the interface twice, is therefore
not necessary to characterize the complete displacement
field; (iv) the position of each atomic column can be de-
rived from (i) and (ii) and then compared to its experi-
mental position.

The following assumptions are made: The ledge height
is not more than a few interplanar spacings; two adjacent
facets have identical misfits; there are well-defined (possi-
bly different) SU's. The ledge STEP, Fig. 1(a), is sup-
posed to be part of an elastically deformed continuum.
Along the two facets ST and EP, which can have
different widths, SU's repeat within some elastic distor-
tions to accommodate the angular and/or length misfit(s)
along the interface. Two planar unit cells of crystals +
and —,denoted M+ and M, match along each facet.
This in effect determines the quasiperiodicity of the SU's
arrangement along a deformed facet. First, by a thought
experiment, atomic bonds are cut along a theoretical
faceted interface, separating the matter into two unde-
formed half crystals. No long-range rotations are as-
sumed to result, and a fixed point Ci is chosen for both
crystals, located in the center of the right facet. The
center of the left facet now splits into C2 and C2, Fig.
1(b). Two free surfaces with ledges h

+ and h

are generated, respectively denoted S+T+E+P+ and
S T E P . In the following, by convention, the
ledge is denoted "ledge h+/h ." From Fig. 1(b), the
general result which is of interest is that, keeping the
crystal fixed, a displacement vector t must be applied in

general to the crystal + along S+T+ to superimpose C2+

and C2 . It is easy to prove [16] that t can always be ex-
pressed as a difFerence between a lattice vector of crystal
+ and a lattice vector of crystal —,whatever the crystals
and their misfits are. At this stage, note that no use is

made of the DSC formalism.
To reconstruct the elastic displacement field along the

ledge and the correct SU's is now straightforward. The
two free surfaces are welded as schematically described in

Fig. 1(b): A displacement is applied to map E+P+ onto
E P . Along E+P+, it changes linearly from C& to ac-
count for the misfits of M+ and M . S+T+ maps onto
S T similarly, except for the addition of an extra con-
stant shift t C2+C2 [16]. In [17], where misfits are
zero and a three-dimensional DSC lattice is assumed, t is
a DSC vector. The resulting elastic field can be described
readily, in a continuum, in terms of a continuous distribu-
tion of infinitesimal translation dislocations over the
facets and finite translation dislocations in S, T, E, and P.
Figure 1(c) is a schematic representation for dislocations
oriented towards the reader and brought along EP from
the right and along ST from the left. In this analysis the
small contribution of the disordered part TE of the ledge
core, the height of which is only a few interplanar spac-
ings, has been neglected.

The elastic field in the close vicinity of the ledge can be
characterized by its BVC: the sum of the Burgers vectors
of the translation dislocations placed at T and E. From
Figs. 1(b) and 1(c), it is either the vector T+T
—E+E or t+b +b', where b and b' are the finite
Burgers vectors of the dislocations located at T and E
only due to the misfits. These vectors can be determined
from the undeformed state [Fig. 1(b)]. Let us first con-
sider an initial state for which (i) the planar unit cells
M+ and M have a common node, and (ii) their orien-
tation is such that a planar pure deformation D permits
one to pass from M+ to M . Then M is subjected to a
three-dimensional rotation R to orient it according to Fig.
1(b). Note that the length misfits are only taken into ac-
count by D, while R takes account of the angular misfit.
A RD is a linear operator transforming the planar unit
cell M+ into the planar unit cell M . If I is the identity
operator, b'= (8 I)C i

P+ and —b' = (2 I)C2+T+-
Since, roughly, the main part of the elastic energy around
the ledge changes with the square of the BVC, this vector
is expected to be small. This offers a systematic way to
determine the possible t's. Because of the translation
dislocation attached to t, it is expected that a series of
ledges such as that described in Fig. 1(c) will be associat-
ed with long-range stresses. Interfaces close to mechani-
cal equilibrium must hence be searched for t=0 or an
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average t close to zero. An additional property can be
derived for the BVC if the following question is answered:
What happens to the BVC when the two facets have

varying widths, i.e., when the extremities S,T,E,P
move? For simplicity, C~ is still maintained as a fixed
point for the two crystals and the section TE is assumed
to move parallel to itself. Moving the extremities of the
facets does not change the straight lines S T and
E P, which are parallel and attached to the theoretical
free surface of crystal —.As a result, the BVC remains
unchanged.

For practical purposes, the BVC of a ledge is deduced
as follows. First, the length and angular misfits are mea-
sured in areas far from the interface to avoid lattice dis-
tortions. Atomic structural units are then analyzed for
both facets so that the positions of their atomic columns
can be reproduced by computer. Second, the lengths of
the two facets ST and EP are measured. The vector b'
(or b') is then derived, since its components are propor-
tional to the length and/or angular misfits of the left
(right) facet. Third, a set of small vectors t is obtained

by computer, and added to b' and b' to form the smallest
possible BVC's. Finally, for each BVC obtained, the dis-

placement field around the ledge is computed using the
scheme in Fig. 1(c), and compared to that of the
HRTEM image in the vicinity of the ledge. Since the
elastic field is uniquely determined from the given bound-

ary conditions, a unique BVC will result. An illustration
will now be presented, for which there is no angular
misfit.

Recent work in HRTEM of (111)TiAI/(0001)Ti3AI
interfaces has revealed the presence of deformation singu-
larities, which have elastic deformation fields similar to
that of Shockley dislocations of the TiAI phase and are
associated with ledges Ii+=2 and h =2, or ledge 2/2
[18]. Other singularities are nevertheless present, like the
unusual example of the ledge 4/4, in Fig. 2. The posi-
tions of the facets are indicated by the white bars. Exam-
ination of this micrograph shows that there are no obvi-

ous extra atomic planes visible. This can be readily
verified by drawing a circuit around the ledge, using

jumps on lattice sites. As a result, it can be inferred that
the ledge is not linked to a significant deformation fieM.
This is false as shown below.

TiAl has a tetragonal atomic structure L 10 with lattice
parameters c a 0.40713 nm [18]; Ti3AI is hexagonal
(Doi9) with a =0.5775 nm and c =0.4638 nm [19]. The
SU's are formed by close-packed stacking of atoms along
the two facets. There is no angular misfit between the
dense planes (111}and (QQQI}, which have practically
the same spacing. The electron beam is parallel to
[IQI]TiAI ll(1120)Ti3AI, this latter vector being the larg-
est one (misfit 0.001). As a result, t is practically zero,
while b'=b' are close to, '2 [121],giving a BVC close to

6 [121]. Using the anisotropic elastic constants for TiAI
in [191 gives the theoretical atomic column positions
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FIG. 2. HRTEM image of a ledge 4/4 at the interface
(I I I )TiAI/(0001)TI3AI. The electron beam is along [101]TIAI.
The white bars labeled f indicate the positions of the facets.
The arrow indi|:ates the position of the theoretical ledge. The
predicted atomic positions (small black crosses) conform
reasonably well with the experimental positions (white dots).
The Burgers vector content (BVC) of the ledge is —,

' [121]TIAI.

(small black crosses in Fig. 2) which can be compared to
the experimental atomic projections shown in the
HRTEM image Fig. 2 (white dots according to [18]).

Figures 3(a) and 3(b) depict, for the same ledge (but
viewed from the opposite direction), why no extra plane
can be detected by a circuit crossing the interface twice.
Figure 3(a) describes schematically the stress-free state
of the crystals. Broken lines RS and UV point out the
mismatch between the lattices at the upper and lower

parts of the ledge, due to the length misfit. By jumps us-

ing atomic column positions, as currently done, any cir-
cuit around the ledge cannot reveal the presence of an ex-
tra plane [Fig. 3(b)]. Such a circuit is thus misleading.

Of course, concerning the detailed atomic structure of
a ledge core, no details can be given from elasticity only.
On the other hand, we note that finite translation disloca-
tions located at the ends of the facets may climb or disso-
ciate towards one or both crystals, or along the facets.

In summary, a new method has been presented to de-
scribe the elastic field around an interfacial ledge when

well-defined SU's repeat along the facets. For the first

time, it has been shown how this field depends on the
SU's (via vector t), on the heights Ib+ and h of the

ledge which can be diferent [16], and on the misfits of
the crystal lattices along the facets (via the transforma-
tion A). In addition, the BVC of the ledge has been

defined, which characterizes the strength of the surround-

ing elastic field without using any circuit crossing the in-

terface twice. These theoretical results have been validat-

ed by an atomic scale study of a ledge 4/4. Beyond the

analysis of HRTEM images they have important implica-
tions for the fundamental question of appropriate bound-
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ary conditions to be applied at solid/solid interfaces.
ENSEEG/LTPCM is URA 29.

' Permanent address: Institute National Polytechnique de
Grenoble, ENSEEG/LTPCM, Domaine Universitaire,

FIG. 3. Schematic representations of the displacement field

associated with a ledge 4/4. (a) Stress-free state obtained after
cutting the atomic bonds along the facets (in dotted lines).
Discontinuities g —,', [121]TiAl at the upper and lower ends of
the ledge, shown by the broken lines RS and UV. (b) Deformed
state.
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