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The large-mass limit of QCD uncovers symmetries that are not present in the QCD Lagrangian.
These symmetries have been applied to physical (finite mass) systems, such as B and D mesons. We ex-
plore the validity of this approximation in the t Hooft model (two-dimensional QCD) in the large-N ap-
proximation). We find that the large-mass approximation is good, even at the charm mass, for form fac-
tors, but it breaks down for the pseudoscalar decay constant.
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(1) Introduction. —Heavy mesons play a prominent
role in our understanding of fundamental processes.
From their weak decays we may extract fundamental pa-
rameters of the standard model of electroweak interac-
tions. Rare decays are sensitive to the presence of new

fundamental forces. And they offer the exciting possibili-

ty of observing for the first time violation of CP invari-
ance in a decay process.

Straightforward interpretation of measured lifetimes
and branching fractions is marred by the difficulties that
strong interactions present for practical calculations.
Monte Carlo simulations of lattice QCD may eventually
furnish accurate calculations of the matrix elements that
are relevant to these processes. An alternative approach
is furnished by the heavy-quark effective theory (HQET)
formalism. Approximate spin and flavor symmetries [1]
of the 5 matrix in the one-heavy-hadron sector are made
explicit. The symmetries become exact in the limiting
case of infinitely massive heavy quarks. From these sym-
metries a number of remarkable results follow, such as
the normalization of form factors for semileptonic B D
and D transitions at maximum momentum transfer,

q 2,„, and a set of five relations among the six correspond-
ing form factors which hold at any momentum transfer.

In this regard it is of paramount importance to deter-
mine the accuracy of the large-mass approximation since
in reality the charm and bottom quark masses are both
only factors of a few larger than, say, the p-meson mass.
Unfortunately, this issue involves nonperturbative matrix
elements and is therefore hard to pin down. Moreover,
one has to consider each physical quantity separately, as
the approach to the asymptotic regime of infinite masses
may be faster for some than for others. For example,
some form factors in semileptonic decay remain calcul-
able at q~~ even after I/m corrections are included [2],
and Monte Carlo simulations of lattice QCD in the
quenched approximation [3] indicate that 1/rn corrections
to the pseudoscalar decay constant of a heavy meson are
large (of the order of 65% at the charm mass).

In this Letter we report on investigations of this issue
using two-dimensional QCD in the 1/N expansion as a
model of the strong interactions. It is worth emphasizing

from the outset that such model calculations are not sys-
tematic approximations to four-dimensional QCD, and as
such one should refrain from using the quantitative re-
sults as estimates for physical observables. Our results
are qualitatively similar to those of potential models [4]
and QCD sum rules [5]: At the charm mass, I/m correc-
tions to the pseudoscalar decay constant are —100%,
while corrections to the normalization of form factors of
flavor-changing currents are —10%. By gathering evi-

dence for qualitative features that are common to all
physically reasonable (uncontrolled) approximations one
can begin to believe that such features are also present in

QCD.
In the following sections we review some salient fea-

tures of the model, compute the pseudoscalar decay con-
stant, compute the form factors for heavy-to-heavy tran-
sitions, and close with a discussion of these results.

(2) The 't Hooft model We .—calculate the properties
of heavy mesons in I+I dimensions. This model of QCD,
in the 1/N expansion, was solved by 't Hooft [6]. It
shares features of the four-dimensional 1/N expansion
which, in turn, has some common ground with meson
phenomenology. The spectrum consists of meson states,
with an approximately linear, Regge-type trajectory.
Since there is no spin in two dimensions, these are obvi-

ously radial excitations —there is no analog of the spin-

symmetry relations which appear so fruitful in studies of
the real world. Nor are there baryon or glueball states,
these being suppressed by the 1/N expansion and the lack
of transverse dimensions. Yet in spite of the peculiarities
of two dimensions, it is nonetheless a nontrivial strong-
coupling solvable theory which is ideally suited for testing
our dynamical ideas. This model has been extensively
studied and we refer the reader for details of the calcula-
tions to [7,8) where the formalism for the matrix ele-
ments was derived, to [9] where the numerical methods
are discussed, and to [10] where they were recently ap-
plied to the study of low-energy effective theories.

We take two flavors of quark, one heavy and one light,
which we denote as Q and q, respectively, with bare
masses M and m. The coupling constant g has dimen-
sions of mass, and we work in units where g N/tt=l.
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(0lqy"y'QI8(p)&-f p" (3.1)

If the states are given the usual relativistic normalization,

(8(p') i8(p)& -2Eb(p —p'), (3.2)

then the large-mass limit gives the scaling behavior

fa Jp-const. This follows from the observation that the
static properties of a "dressed" heavy source of color are
independent of its mass. The factor of Jp simply reflects
the mass-dependent normalization of states, cf. Eq (3.2). .
In four dimensions there are logarithmic corrections to
this relation [12]. We have omitted these, foreseeing that
they are absent in a super-renormalizable theory.

In two dimensions both vector and axial currents are
good interpolating fields for the pseudoscalar meson.
Since y y" e""y„, they are both characterized by the
same decay constant. In the 't Hooft model fa is easily
computed [7,8]. It is given by fa fodrpa(t), where
pa(t) is the momentum-space wave function for the 8
meson and t is the fraction of light-cone momentum car-
ried by the heavy quark [6]. In Fig. 1 we show how the
limiting behavior fadM —fa Jp -const is attained.

Fitting the high-mass portion of the curve (M )5) by
a quadratic polynomial in 1/M gives a description of the
1/M corrections:

fadM =2.0 1 — +1.4 1.4
M M

(3.3)

There are two sources of uncertainty in this calculation:
the end-point fit of the wave functions pa and the few

The lowest heavy-light Qq bound state —let us call it the
8—is a pseudoscalar of mass p. We can solve the non-

perturbative bound-state equation numerically for the
wave functions and the masses [9].

As our interest is in the approach to the asymptotic
regime, we hold m fixed (taking the value m 0.3
throughout the paper), computing the dependence of the
universal form factors and pseudoscalar decay constant

fa as functions of M. (It is also possible to take the limit
M ~ directly in the field theory before solving for the
bound states, as have been done in 4D to derive the
HQET [1ll. We have found the bound-state equation
appropriate to this limit, which will be reported else-
where. )

An important limitation of this model is the lack of
spin, and we shall have nothing to say about relations
that follow from the spin symmetry of the HQET. On
the other hand, because the model is a relativistic field

theory exhibiting confinement, it is ideally suited to test
the scale of the onset of flavor symmetries. The transition
from light- to heavy-quark dynamics was explored in de-
tail in Ref. [10]. Inspection of the spectrum of QQ states
and the strength of the singularities in the form factors
reveals this "charm" mass to be between 1 and 2 [10].

(3) The pseudoscalar decay constant. —The pseudo-
scalar decay constant fa for the meson 8 is defined by
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FIG. 1. Plot of the pseudoscalar decay constant f+~M as a
function of the mass of the heavy quark. The mass of the light
quark, m, is fixed throughout: m2 0.3.

(8'(p') ig'y„Qi8(p)& -f (q )(p+p')„

+f (q')(p —p')„, - (4.1)

where the momentum transfer is given by q p —p'. 8
and 8' have the same light-quark content but difl'erent

heavy quarks. When Q' Q, conservation of current
gives f 0. The remaining form factor, f(q ), is nor-
malized, f(0) l.

In the limit of infinite masses, the mesons are more ap-
propriately labeled by their velocities v p/p and
v' p'/p', and it is natural to describe the dependence on
q2 through the function w=v v' (p +p' —

q )/2pp'.
The transition amplitude for a "dressed" heavy source of
color with velocity v to a second one with velocity v' is
then independent of their masses. Thus all three form
factors in this limit are given in terms of a single univer-
sal "Isgur-Wise" function [1],g(v v'):

I +
f~(q )=g(v v') " ", f(q')=g(v. v').

2 ''p
(4.2)

As before, we ignore logarithmic corrections [13] which
are absent in the super-renormalizable model.

The Isgur-Wise function is normalized —((1)=1—by
evaluating it for identical heavy mesons so that v. v' = 1

corresponds to q =0. This in turn gives a prediction in
the case of different heavy mesons at q qm, „=(p

p&) 2.

values of the mass we take for our mass fit. By varying
the number of sampling points and successively improv-

ing the quality of our wave functions we estimate the er-
ror to be less than 2% for the coeScient of 1/M and less
than 20% for that of 1/M .

(4) Form factors. —Of greatest interest in probing the
structure of the theory in the heavy-quark limit is the
form factor for a heavy-quark current between heavy
meson s:
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P +
pp

(4.3)

Let us now examine the behavior of the form factors
for ftnire ma-ss heavy quarks in two dimensions, where
they may be computed exactly. In two and four dimen-
sions the definitions and infinite-mass relations are identi-

cal. What are the dominant 1/M corrections and where
do they set in? How well can the form factors be approx-
imated from the quark-model contributions alone?

It is straightforward to evaluate the current matrix ele-
ments of interest. For spacelike momentum transfer the
minus component of the current gives the following ex-
pression [8] in which the first term dominates our calcu-
lation

CO t 1
—t)+ dr 4s G(t;q'),

N 1 N
(4.4)

!
gives K~ =0.10, 0.26, and 0.32, and x'2 =0.6, 1.6, and 3.0,
for v t. '=1.25, 2.0, and 3.5, respectively. As was the
case for the pseudoscalar decay constant, these quantities
are good to about 10% accuracy.

Next we consider transitions between diITerent
ground-state mesons. At q,„ the left-hand side of (4.4)
is predicted in the HQET, cf. Eqs. (4.1) and (4.3):

(8'(p') IQ'y-gl8(p)&l, z =2' p'.

In Fig. 3 we show

(4.6)

(8'(p') Ig'y- g I8(p)) l, ~.,d(M') =- —
1

2v'pp'
(4.7)

as a function of the heavy-quark mass M' in the lighter 8'
meson. The heavier 8 meson has heavy-quark mass held

fixed at M=450. This plot reveals that the finite-mass
corrections are quadratic in 1/M'. This result is expected
as a consequence of Luke's theorem [2], which states that
there are no corrections of order 1/M' to the predicted
normalization of form factors at maximum momentumrc2(v t')

M'
IC

&
(L~ ' tl )

f(U v') =g(U v') 1—
M' (4.S)

(8'I ~ —I8) r 1
—I

2q — 1 co 1
—co

dt Pa —Pa

1 1
1
—t+ J dr ya @a G(i;q

1
—N 0 N 1

—N
i

where co=—p -/q —, the full vertex 4(r ) =—jo dr'p(r')/
(I' —t), the Green function G(t;q )=p„f,pp~(r)/(q
—p2), and G(t;q )—=godt'G(t';q )/(t —t') .

The first line represents the "quark-model" contribu-
tion to the form factor, where the current couples directly
to the valence heavy quark. The other terms represent
the full set of remaining graphs which arise from gluon
exchange in the current channel. These give small contri-
butions: They correct the form factors below by no more
than 1.2% or 0.003% for M=4 or 45, respectively, pro-
vided t U' ~ 3.

First we consider the form factor f(q ) for identical
heavy mesons, 8'=B. In Fig. 2 we plot the heavy-quark
current form factors for M =5, 14, and 450.

To better characterize the large-mass behavior we can
examine, at fixed w =v v', the approach to the asymptot-
ic function as the heavy-quark mass is varied away from
M=ee. We calculated the form factors for additional
masses, M=45 and 140. A fit by the quadratic polyno-
mial in 1/M',
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FIG. 2. Heavy-quark current form factors f(v v') as func-

tions of v. v' for diAerent masses M of the heavy quark. The
solid, dashed, and dash-dotted lines correspond to M=450
(eAectively infinite), 14, and 5, respectively.
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FIG. 3. DiAerence d(M') from unity of the matrix element
of the Aavor-changing current between ground-state mesons, at

q, „, normalized to 2dpp', as a function of the heavy-quark
mass M' in the lighter meson; see Eq. (4.7). The heavier meson

has M =450.
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transfer; corrections being at order 1/M'. (Luke's the-
orem, in its original version, ignores corrections of order
a, (M')/M'. A stronger version [Cho and Grinstein (to
be published)] gives the absence of corrections of order
I/M' to all orders in the strong coupling. ) Again the re-
sult can be fitted by a quadratic polynomial in I/M':

d(,) 0.002+ 0.002 0.14 ~ 0.01
~t Ml2 (4.8)

Alternatively, one can fit by a power A/M'", for which we

find A = —0.17 and n 2.1, which clearly indicates the
absence of 1/M' corrections.

(5) Discussion and outlook —Th.e size of 1/M correc-
tions is not uniform and cannot be characterized by ftt
alone: They are far larger for the pseudoscalar decay
constant than they are for the form factors, for which the
asymptotic limit is approached rapidly. This is true both
for the functional form of the form factors out to
moderate v v' [Eq. (4.5)] as well as for the normalization
of the form factors of flavor-changing currents [Eq.
(4.8)l. At the "charm" mass the model has corrections
of order 100% to the HQET prediction of the pseudosca-
lar decay constant, while it gives small corrections,
(4-14)%, to the normalization of form factors of flavor-

changing currents at v v'=1.
It is apparent that the 't Hooft model is a valuable test-

ing ground for our ideas of the large-mass limit of QCD.
One may attempt to investigate the validity of Bjorken's
sum rule [14], since one can compute the wave functions
of rather high excited states of Qq mesons. More in-

terestingly, one can address the question of whether the
form factor for the semileptonic decay of a heavy meson
into a light one is wave function or pole dominated. The
answer remains elusive due to the intrinsically nonpertur-
bative nature of dynamics involved.
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Alfred P. Sloan Foundation and by the Department of
Energy under Contract No. DE-AC35-89ER40486. The
research by P.F.M. was supported in part by DOE Grant
No. DE-AC02-76-ER03130.

Note added. —In an earlier version the fit shown in

Fig. I was labeled as fJp instead offJM. This does not
affect our conclusions but did lead to an apparent dis-

crepancy with the later work of Burkhardt and Swanson
[15]. After accounting for a difl'erent state normaliza-
tion, we find both papers are in agreement.

Those authors, however, draw an opposite conclu-
sion —that 1/M corrections are as large for fortn factors
as for the decay constant —because they focus on
different domains; we believe our choice is more relevant.
For flavor-neutral form factors we concentrate on

1~ v. v'~ 3.5, while they emphasize behavior for v v'

)& I, where the HQET is in any case expected to break
down. For flavor-changing form factors we emphasize
v. v' =1, since the absolute prediction in the heavy-quark
limit may allow a determination of CKM angles from the
semileptonic decay. Reference [15] focuses instead on

f (v -v'), a form factor whose contribution to B Dev
is suppressed by m, /mtt, and which is not protected from
I/M corrections by Luke's theorem (as one may readily
infer from their Fig. 3.8).
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