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Rotating Charged Black Hole Solution in Heterotic String Theory
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We construct a solution of the classical equations of motion arising in the low-energy effective field

theory for heterotic string theory. This solution describes a black hole in four dimensions carrying mass
M, charge Q, and angular momentum J. The exiremal limit of the solution is discussed.
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It has been realized recently that the low-energy
effective field theory describing string theory contains
black hole (or, more generally, black p-brane) solutions
which can have properties which are qualitatively dif-
ferent from those that appear in ordinary Einstein gravity
[1]. Most of these solutions are characterized by one or
more charges associated with Yang-Mills fields or the an-

tisymmetric tensor gauge field, and a nontrivial dilaton
field. In the absence of any charge, the solution reduces
to the ordinary Schwarzschild solution.

Rotating charge-neutral black hole solutions can also

be constructed in string theory, and are identical to the

Kerr solution [2] of ordinary Einstein gravity with the di-

laton taking a constant value. Recently, rotating charged
black hole solutions in these theories have been analyzed

[3] in the limit of small angular momentum. In fact, in

Ref. [3] the authors consider a more general class of
theories than those which arise as the low-energy effective

action in string theory, by allowing dilaton couplings to
the Maxwell field of the type which is not necessarily the

one induced in string theory. They, however, consider

only the dilaton-graviton system, and do not consider a

more general action that also includes antisymmetric ten-

sor gauge field.
In this paper we shall construct an exact classical solu-

tion in the low-energy effective field theory describing
heterotic string theory, which describes a black hole car-
rying a finite amount of charge and angular momentum.
Our solution, however, differs from that of Ref. [3] even

in the limit of small angular momentum since it involves

the antisymmetric tensor field in a nontrivial way. In

fact, since a rotating charged black hole also carries a

magnetic dipole moment, the antisymmetric tensor field

background is induced automatically if we take into ac-
count the coupling of the antisymmetric tensor gauge
field strength to the Chem-Simons three-form construct-
ed from the gauge fields.

The method that we use to obtain the solution is the
twisting procedure [4-8] that generates inequivalent clas-
sical solutions starting from a given classical solution of
string theory. In particular, in Ref. [7] it was shown how

one can generate charged black hole solutions starting
from a charge-neutral solution. %'ith the help of the
same transformations, we shall generate the rotating
charged black hole solution by starting from a rotating

black hole solution carrying no charge, i.e., the Kerr solu-
tion [2].

We shall first summarize the results of Ref. [7] applied
to the particular problem at hand. We begin with the
string-theory eA'ective action in four dimensions:

S= — d xJ det—Ge ( —R+,'2 H„,~H"'e

—G"'B„eb„e+,' F„,F"') . —

Here G„„ is the metric, R is the scalar curvature,
F„„=rI„A„t),A„ is —the field strength corresponding to
the Maxwell field A„, tIi is the dilaton field, and

H„„=8„8„~+cyclic per mutations
—[03 (A ) l p p,

where B„,is the antisymmetric tensor gauge field, and

[03(A)]„,~ =
4 (A„F„~+cyclic permutations)

is the gauge Chem-Simons term. There are several
points we need to mention at this stage. They are the fol-
lowing. (1) We are considering a theory where six of the
ten dimensions have been compactified (say, to a Calabi-
Yau manifold). The massless fields arising from com-
pactification have not been included in the effective ac-
tion. (2) We have included only a U(l) component of
the full set of non-Abelian gauge fields present in the
theory. This will suffice for our purpose, since we shall
look for solutions carrying U(l) charge only. (3) The
metric G„, used here is the metric that arises naturally in

the o. model, and is related to the Einstein metric G„,
through the relation

After this field redefinition (together with a rescaling
2@,A„2J2A„) one can recover the action of Ref.

[3], except for the H„,~H"'~ term appearing in Eq. (1).
(4) We have truncated the action to contain only those
terms that contain two or fewer derivatives. Thus, for ex-
ample, the Lorentz Chem-Simons term has not been in-

cluded in the definition of H„,~, since the corresponding
terms in the action will contain more than two deriva-
tives.
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time coordinate t. Let us now define the matrices 4', ri,

and JÃ as

R„„=—B„„—G„„—4 A„A„,l (s)

ri„,=diag(l, 1, 1, —1),

We shall look for solutions that are independent of the
time coordinate t .In the following analysis we shall use
matrix notation to describe the various fields. In this no-

tation, G„„and B„„will be treated as 4X4 matrices, and
A„will be treated as a four-dimensional column vector,
with the fourth row and/or column corresponding to the

and

'(X' g)—G '(X g)—(+' q)—G '(m+g) —(m' ~)G
A/I= (X'+q)G '(X q)—(X'+g)G '(X+g) —(X'+~)G-'~ .

gTG —l(~ ri) gTG —l(cq+rl) gTG —lg

Here T denotes transposition of a matrix. Equation (7)
defines a 9&&9 matrix AI Th. e result of Ref. [7] then says
that if [G„„B„„,@,AJ describes a time-independent solu-
tion of the classical equations of motion derived from the
action given in Eq. (1), then [G„'„,B„'„,O', A„'] also de-
scribes a solution of the same equations of motion, if the
primed variables are related to the unprimed ones
through the relation

Jlt
' = QAt 0, 4' —ln detG' =4—ln detG,

(9)0 = cosha sinka

sinha cosha,

Here I7 denotes a 7X7 identity matrix, and a is an arbi-
trary number. Equations (8) uniquely determine all the
primed fields in terms of the unprimed ones.

We now apply this transformation to the charge-
neutral rotating black hole solution. This is given by the
standard Kerr solution [2]

2 2 2 2 2 2
p +a cos 8 —2mpd 2+ p +a cos 8

d 2 ( z+ 2 2 )d 2

p2+a 2cos2g p2+, a 2 2rnp

+ j(p +a )(p +a2cos 8)+2mpa sin 8]dg —
2 2 2 did',p+a cos0 p+a cos8

~=0, B„„=O, ~„=O.

+ [p +a cos 8+2mpsinh (a/2)]d8

sin 8

p +a cos 8+2mpsinh (a/2)

The transformed solution is given by

(p +a cos 8 2mp)(p +—a cos 8)
d 2+ p +a cos 8

d 2+( 2+
[p2+a 2cos28+2mpsinh2(a/2)] p +a —2mp

+[(p +a )(p +a cos 8)+2mpa sin 8+4mp(p +a )sinh (a/2)+4m p sinh (a/2)j

(p +a cos 8)sin 8 2 4mpacosh (a/2)(p +a cos 8)sin 8

[p +a cos 8+2mpsinh (a/2)] [p +a cos 8+2mpsinh (a/2)1

O' = —In
p2+a2cos28+2mpsinh (a/2)

p+a cose
2mpa sinha sin 0

p +a cos 8+2mpsinh (a/2)
2mpsinha

p +a cos 8+2mpsinh (a/2)

2mpasinh (a/2)sin 8

p +a cos 8+2mpsinh (a/2)
'

t

The other components of A„and B„„vanish. The Einstein metric dsE =e ds is given by

p +a cos 8 —2mp 2+ p +a cos 8+2mpsinh (a/2)
dp

p +a cos 8+2mpsinh (a/2) p +a —2mp

4mpacosh (a/2)sin 8
drd

p +a cos 8+2mpsinh (a/2)

+ j(p +a )(p +a cos 8)+2mpa sin 8+4mp(p +a )sinh (a/2)+4m p sinh (a/2)[

(io)

(i2)

(i4)

(IS)
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This metric describes a black hole solution with mass M,
charge Q, angular momentum J, and magnetic dipole mo-

ment p given by

J 1

2M M —
Q /2M+[(M —

Q /2M) J—/M ]'
(25)

m =M —
Q /2M, sinha=2J2QM/(2M —

Q ),
a =J/M. (19)

The coordinate singularities (horizon) occur on the sur-

faces

p
—2mp+a =0

which gives

p=m+ (m' —a')'"
2

2M

Z
2

2M

- ijz
J2

=PH .

(2O)

(21)

M = (m/2) (1+cosh a), Q = (m/ J2)sinha,

J = (ma/2) (1+cosha), p = (I/ J2)ma sinha,

so that the g factor [3] is given by

g —=2pM/QJ =2.

We shall now analyze various properties of this solu-

tion, and also discuss its extremal limit. For this purpose,
it will be more convenient to express m, a, and a in terms
of the independent physical parameters M, J, and Q by
inverting the relations given in Eq. (17). We get

As we approach the extremal limit, 0 (1/2M)sgn(J)
as long as ~J ~~0. If J=O, then 0 vanishes, as can be
directly seen from Eq. (25). It is interesting to note that
in the extremal limit

~
0~ depends only on the mass of the

black hole.
Finally, the surface gravity tc (or the Hawking temper-

ature TH = tc/2tr) is calculated at the pole as

lim (gt't') ' t] ( —g ) ~e
P PH

[(2M 2 g2)2 4J2] I/2

2M I2M 2 g 2+ [(2M 2 Q2) 2 4J2] I/2]
(26)

Thus in the extremal limit K 0 if J&0. On the other
hand, if J=0, then x =1/4M, in agreement with the re-
sults of Ref. [1].

To summarize, in this paper we have constructed a ro-
tating charged black hole solution in four-dimensional
heterotic string theory and studied its various properties.
The extremal limit of the solution was also discussed,
and, for Ja0, was found to have features that are quali-
tatively similar to the extremal rotating black hole rather
than extremal charged black hole, as was conjectured in

Ref. [3].

The area of the outer event horizon with the metric given
in Eq. (16) is given by

' 2
f1 ~

3 =8@M' M — + M-
2M 2M

.
&/z

J2
M

(22)

From Eq. (21) we see that the horizon disappears unless

IJ I
~ M' —g'/2. (23)

6„+26„n+6«n' =0.
This gives

(24)

Thus the extremal limit of the black hole corresponds to

~J) M —
Q /2M. In this limit, A 8tt~J ~. Hence the

event horizon remains to be of finite size in this limit, as
is expected from the general arguments of Ref. [3]. Note
the amusing result that in the extremal limit the area of
the event horizon depends only on the angular momentum
J. Surprisingly, this result is identical to the correspond-
ing result for the rotating charged black hole in a dif-
ferent model discussed in Ref. [9].

The angular velocity 0 at the horizon is determined by
demanding that the Killing vector IJ/rit+ 0 rl/8& is null at
the horizon [2,3]. In other words,
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