
VOLUME 69, NUMBER 7 PH YSICAL REVIEW LETTERS 17 AUGUST 1992
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I propose a numerical simulation algorithm for statistical systems which combines a microcanonical
transfer of energy with global changes in clusters of spins. The advantages of the cluster approach near
a critical point augment the speed increases associated with rnultispin coding in the rnicrocanonical ap-
proach. The method also provides a limited ability to tune the average cluster size.

PACS numbers: 05.20.—y

Monte Carlo simulation is now a major tool for the
study of both critical phenomena in condensed matter
physics and nonperturbative field theory in particle phys-
ics. With continual tuning over the years, current algo-
rithms are well adapted to today's supercomputers. Nev-
ertheless, on large systems near a critical point, severe
slowing of the evolution to independent states encourages
the search for yet better methods. Two intriguing and
apparently unrelated ideas for such improvement are
cluster algorithms and microcanonical techniques.

Swendsen and Wang [1] built on the work of Ref. [2]
and proposed a cluster flipping procedure as a way to
make coherent long-range changes in a single Monte Car-
lo updating step. They were motivated by the rather slow

probing of important long-distance physics by local algo-
rithms when the couplings of a system are near a critical
point. Later Wolff [3] presented a powerful variation on
the approach, where at each step a single large cluster of
variables is formed and modified.

Another useful scheme is the microcanonical Monte
Carlo approach [4]. Here a set of additional variables,
referred to as "demons, " are introduced to transfer ener-

gy around the system. During the updating, the com-
bined energy of the system of interest and the auxiliary
variables is held absolutely constant. In this the tempera-
ture is an output of the simulation, being extracted from
the distribution of demon energies. The primary advan-

tage is that the demons can take a very simple form, and
for discrete systems they can be treated entirely with sim-

ple bit manipulation. With many demons stored in a few
computer words, an effective parallelization is possible on
conventional serial computers. In simple cases no
Aoating-point arithmetic is ever needed, and many indivi-
dual spins can be updated in parallel via bitwise opera-
tions. This gives programs for the Ising mode1 which run
about an order of magnitude faster than conventional ap-
proaches [5].

In this paper I present a combination of these ideas, a
cluster algorithm where the cluster growth is determined
entirely by bit manipulations involving a set of rnicro-
canonical demons. The primary gain is increased simula-
tion speed while retaining the advantages of a global up-
dating scheme near a critical point. In addition, discus-
sions of detailed balance are particularly straightforward

in the microcanonical language, simplifying justification
of variations in the cluster algorithms. The microcanoni-
cal approach also introduces new parameters for tuning
the cluster size. As with the local microcanon ical
method, the temperature is determined as a function of
the constant total system energy. WolA' [6] has con-
sidered another hybrid of the cluster and microcanonical
approach, where, rather than the energy, the total area of
the cluster boundaries was held fixed. This allowed him
to directly and efficiently study dynamically diluted Ising
systems.

In the infinite-volume limit, the canonical and micro-
canonical ensembles give rise to the same physics. The
method discussed here maintains a conserved energy and
thus is microcanonical in nature. The energy conserva-
tion is global, and indeed locally the dynamics is essen-
tially canonical. While in principle ergodicity can be a
problem with a microcanonical approach, this is expected
to be a serious issue only in extreme circumstances, such
as with very low temperature or small lattices. Ergodicity
can be assumed by converting the algorithm to a canoni-
cal one with an occasional refreshing of the auxiliary
variables, as discussed below.

For simplicity I begin with the simple Ising model. On
each site i of an arbitrary lattice lies a spin variable 0;
taking values in [I, —11. The energy of each bond is

lowest if the neighboring spins have the same value, and
is increased by two units for antiparallel spins. Thus I
consider the Hamiltonian

H. = —g ~;~, , (1)
4,JI

whe."e Ii,jI denotes the set of nearest-neighbor pairs, each
pair appearing once in the sum. I am interested in the
statistical mechanics of this system at inverse tempera-
ture P, and thus consider the partition function

Z =+exp( pH ) . —
1~1

On a two-dimensional square lattice this model has a
second-order transition at P = —,

' ln(1+ J2) =0.44068 . .

[71.
As in Ref. [4] I augment this system with a set of auxi-

liary variables called "demons. " In that reference the
demons were associated with the lattice sites. Here, how-
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ever, I place them on the system bonds. Each of these
demons carries a sack of energy which it can use to "flip"
or change the state of the bond it occupies. Thus for each
neighboring pair of sites i and j, I associate a demon en-

ergy D;z—=DJ$ ~0. For the Ising case the bond energies
always change in steps of two, so I am free to restrict the
demon energies to non-negative even integers. It is also
convenient to place a capacity limit on the demon in the
form of an upper bound for its energy D;~ ~ D,„. The
practical advantage of this constraint lies in the storage
and manipulation of the demon energies with only a few
bits. For example, with two bits per demon I can consid-
er the individual demon energies to lie in the set
[0,2,4, 6], and store 32 such demons in two 32-bit com-
puter words. As with the local microcanonical approach,
the upper limit on D;~ still leaves the algorithm exact, al-
though it will modify the cluster shapes.

The total energy for the coupled system is

H= —$ o';oj+DJ.
Ii,j')

The corresponding canonical partition function is

Z = g exp( —PH) .
la, D)

(3)

(4)

This immediately factorizes into contributions from the
lattice and the demons. It is only through a microcanoni-
cal constraint that these variables become coupled.

The algorithm consists of three parts: cluster growing,
cluster flipping, and demon shuffling. For the demon
shufHing I move the demons around to new locations.
This can be done in an arbitrary way because the Hamil-
tonian in Eq. (3) leaves the demons uncoupled. Indeed,
the separate bits of the demons are also uncoupled; thus,
the first bits could be shuffled separately from the second
bits. (For the test simulations below, the bits were
shuffled together. ) Because it is so arbitrary, the shuffling
needs only insignificant computer time.

For the cluster growing, I divide the demons into two

sets, "contented" and "sad." A demon is contented if it
possesses an amount of energy which allows a change in

the state of the currently occupied bond. Thus, if the
neighboring spins are parallel and the demon has two or
more units of energy, then it is happy. If the demon can-
not accommodate the change in the bond energy, it is sad.
This might occur for parallel spins if the demon has no

energy, or for antiparallel spins if the demon's energy
supply is full and cannot accept more. A cluster is now

defined as a complete set of sites joined by sad demons.
All bonds on the exterior boundary of such a cluster carry
contented demons. The contentedness of the demon on
any given bond corresponds closely with the bond occupa-
tion variables used in Ref. [2].

I now come to the cluster-flipping stage. Here I can ei-
ther follow the approach of Swendsen and Wang [I] or
the variation of Wolff [3]. In the former case, the lattice
is divided into clusters as above, and with a random prob-

ability all spins in each cluster are either flipped or not.
In the Wolff approach, a single random site is chosen,
and the corresponding cluster has all of its spins inverted.
This picks a given cluster with a probability proportional
to its volume, and thus gives larger average cluster sizes.
For the remainder of this discussion I consider this
single-cluster approach. When the cluster(s) of spins is
(are) flipped, the appropriate changes of the demon ener-
gies on the cluster edges must also be made. Thus the en-
ergy in Eq. (3) is absolutely conserved.

The justification of the procedure is a simple applica-
tion of detailed balance. After a cluster is flipped, all
demons retain their contented or sad state. Thus if we
were to regrow the clusters, their shapes would be un-
changed. If the demons are not moved and a cluster is
grown from the same point, a second application of the
algorithm will return exactly to the starting state. With
an enseinble in equilibrium, all states of equal energy are
equally likely. Under the algorithm the states of the cou-
pled demon-spin system break up into pairs of degenerate
states. These states just flip back and forth between each
other, and remain equally likely. The demon-shuIHing
stage then changes the cluster breakup for later steps.

As discussed in Ref. [4], the microcanonical approach
has no explicit coupling parameter in the algorithm. In
equilibrium, the temperature is an output and depends on
the total system energy. I can easily find it from the dis-
tribution of demon energies. Here the separate demon
bits are uncoupled, so I can extract the inverse tempera-
ture from the expectation of a single demon bit. For ex-
ample, I have

(5)

where P is the average fraction of the demons with their
lowest bit set.

The microcanonical approach is easily modified to
canonical in the same way that the local microcanonical
algorithm of Ref. [4] reduces to the canonical Metropolis
et al. [8] procedure. For this reduction, I refresh the
demons after each cluster step; i.e., I replace the demon
energies with a random positive number selected with
Boltzmann probability exp( PD;J ). Indeed, if—the
demon has no upper limit on his energy, the refreshing
procedure recovers exactly the algorithms of Refs. [1]
and [3].

As in the local case, for large volumes and when the
demon scrambling takes place over long distances, the
canonical and microcanonical evolutions become essen-
tially indistinguishable. Thus for systems involving con-
tinuous dynamical variables, where random number gen-
eration represents only a minor part of the necessary
arithmetic, there is no obvious advantage of the micro-
canonical approach over the canonical one. If the demon
scrambling takes place over a short range, the energy
conservation takes on a local character, and there could
be important dynamical diA'erences between the algo-
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rithms.
The primary advantage of the approach lies with

discrete systems, where all necessary arithmetic can be
done entirely by bitwise operations. For example, on a
32-bit machine a group of 32 adjacent spins can be stored
in a single computer word, I, and 32 two-bit demons can
be stored in two computer words, Dl and D2. Using
shifts and logical operations, the calculations to find the
sad and contented demons and to grow the cluster can be
done for all 32 demons siinultaneously.

The gain here is less than in the local case because
much of the time is spent growing the cluster. Once the
sad bonds are found, this is the same as in the canonical
algorithm. The cluster growth can still be done by bit
manipulation, but with a porous cluster much of the work
involves irrelevant sites. I note in passing that, unlike in

the local approaches, no division of the lattice into in-
dependent sets of sites, such as a checkerboard, is in-
volved.

Wolff [3] observed that for the Ising model his average
cluster size is tied to the magnetic susceptibility. As the
demons have upper as well as lower bounds on their ener-
gies, this connection is less precise here. In general, the
clusters tend to be small at high temperatures where it is

easy to satisfy the demons' desires, while they become in-

creasingly dense at low temperatures where only a few
demons will have the required energy to excite their
bonds. In Fig. I consider the two-dimensional model and
show the average cluster size as a function of beta for
demons carrying from one to four bits. Note how the
average cluster size increases as the number of demon
bits is reduced. This dependence is essentially invisible
with three or more bits. Indeed, occupancy of the higher
bits is exponentially suppressed by a Boltzmann factor.

Intuitively, the most independent configuration after a
single step should be obtained when about half the spins
are fiipped. In the Ising case this occurs conveniently
near the critical temperature. At high temperatures the
clusters are quite small, and the algorithm seems to have
no advantage over a conventional local approach. Con-
versely, at low temperatures the clusters dominate the lat-
tice and primarily serve to Aip the lattice back and forth
between opposite magnetizations. Note, however, that if
a hot lattice is rapidly quenched with a local algorithm to
a low-temperature state where several distinct domains
are frozen in, a switch to a cluster algorithm quickly gen-
erates clusters which fill single domains. In this case the
approach is quite efficient at relaxing the system to its
true ground state.

Figure 1 shows that with single-bit demons, for all en-
ergies the clusters tend to be quite large, and most spins
Aip at each step. While the algorithm thus will require
more iterations to reach a truly independent configura-
tion, it is perhaps worth noting that in this single-bit limit
the algorithm is particularly simple. Contented demons,
which form the cluster edge, are those where of the three
bits consisting of the spins and the demon itself an odd
number are set. This can be determined by a simple ex-
clusive OR operation between the three bits.

Varying Dm, „gives some control over the average clus-
ter size. Even for discrete models, this control is an
essentially continuous parameter because not all demons
need to have the same number of bits. In general, addi-
tional constraints on the demon energies work to increase
the number of sad demons. As it is forbidden to exclude
any unhappy demon bonds from the cluster, such con-
straints always tend to increase the average cluster size.
Unfortunately, it is unclear how to modify the approach
to obtain smaller clusters.
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FIG. l. The average cluster volume divided by the total sys-
tern volume as a function of the inverse temperature. The re-
sults are for the two-dimensional Ising model on a 320 by 320
lattice. The squares, diamonds, crosses, and plus signs are for
one- through four-bit demons, respectively.
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FIG. 2. The average cluster volume divided by the total
volume as a function of the inverse temperature for the U (l)
spin model in two dimensions on a 50 by 50 lattice.
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In general, cluster algorithms are more limited in their
applicability to systems where the spins are continuous
variables. The usual approach is to imbed a Z2 symme-
try in the spin manifold [3]. The microcanonical idea
directly adapts to such systems. In this case, however,
the bit manipulation advantages of the discrete models
are lost. In Fig. 2 I show the beta dependence of average
cluster size for this algorithm as applied in two dimen-
sions to the U(l) or "X-Y" model, where o is a complex
number of unit magnitude. At each stage, a fixed ran-
dom direction in the group is chosen, and the group ele-
ments in the cluster reflected about it. At high tempera-
tures the clusters are again small, but for couplings of or-
der unity, where the primary physical interest in this
model lies [9], the clusters cover a fair fraction on the
system and should give an efficient decorrelation time.
For this figure no upper bound was placed on the demon
energies; so, the results should be nearly identical to the
canonical approach.

In summary, I have presented a simulation scheme
which combines features of the cluster algorithms of
Refs. [1,3] with the fast microcanonical approach of Ref.
[4]. This enables simulations done entirely by bit manip-
ulation, permitting parallel operations on conventional
computers. Furthermore, the introduction of the auxili-

ary demon variables provides a particularly simple way to
justify detailed balance for cluster algorithms in general.
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