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We investigate the statistical properties ol the surface of thin films grown by molecular-beam epitaxy
(MBE). We present and analyze a simple model of MBE growth which incorporates surface diAusion
and deposition in a physically correct manner. The short-time behavior does not correspond to that pre-
dicted by the continuum model of Villain, Das Sarma, and others. At long times, the model is governed
by Kardar-Parisi-Zhang dynamics.
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&lt(xg, t)) -0,

(lt(xi, t)lt(x(i, t')) =Sb"(xi —xIi)6(t —t') .

(2)

We shall argue in this paper that the theoretical argu-
ments tying the above continuum equation to M BE
growth possess a number of weak points. We shall then

introduce a model which captures the basic physics of
MBE in a computationally e%cient manner so that the
predictions of Eq. (I) can be put to a test. The results of
the simulations of our model will be seen to indicate that

Eq. (l) does not adequately describe the statistical prop-
erties of MBE growth. At long-time and length scales
our model crosses over to a regime described by the
Kardar-Parisi-Zhang (KPZ) equation [5]

h D~V 'h+A, 2(Vh) +lt- (3)

as overhangs become important. However, even before
this crossover, Eq. (I) does not correctly predict the scal-

ing behavior. The nature of an appropriate continuum
description for the pre-KPZ regime will be discussed in

the conclusion.
Let us first review the physical motivation of Eq. (I),

which lies in the fact that the essential mechanism of sur-

face relaxation is surface diA'usion (SD). In this case, as
shown by Mullins [6], the growth of the surface should be
described by

i „=D4Vi-na. +p,

There has been much recent interest in the statistical
properties of nonequilibrium surfaces. In particular,
much attention has been focused on theoretical models to
describe thin-film growth by molecular-beam epitaxy
(M BE). This work is particularly germane given the very
recent observation [I] of power-law scaling of surface
roughness in iron films grown by MBE. A number of
groups [2-4] have proposed that the statistical properties
of M BE growth are given by the fourth-order continuum
equation [2]

h = D4V h+—X4V-(Vh) +lt, -

where h(xi, t) is the height of the surface and lt is a noise
source with correlations

where n„ is the normal velocity of the interface, x the
curvature, Vi-a the Laplace-Beltrami (intrinsic Laplacian)
operator on the surface, and 9 the (Auctuating) Aux. As-
suming the flux is normally incident so that growth is pri-
marily in the transverse (x, ) direction and expanding
about a flat interface yields

h = —D4v h+9'+ (5)

This is similar to Eq. (l) above, albeit with some impor-
tant diAerences. First, there is no nonlinear term of the
form V-(Vh)-'. The physical basis of this fact is that the
chemical potential is independent of the orientation of the
surface (except for lattice effects, ignored in this continu-
um description). This symmetry argument would seem to
imply that such a term cannot be generated by coarse
graining, and so k4 should be zero to all orders in a
renormalization-group expansion. This is consistent with
the fact that A,4 is not renormalized [41, at least to one-
loop order [7], so that if the bare theory has A.4 equal to
zero, it cannot be induced by other nonlinear terms. In
addition, Mullins' equation as well as its expansion equa-
tion (5) have the symmetry (in the frame moving with
the average velocity of the interface) h —h. (Higher
powers of ~ in Mullins' equation which should break this
symmetry are irrelevant for d~ I.) This symmetry is

violated as well by the nonlinear k4 term. Furthermore,
in the absence of the k4 term, the nonlinearities implicit
in Eq. (4) are all relevant in d=l and marginal in d=2
so that the scaling behavior of the surface diA'usion dom-
inated regime is in fact not obvious.

The second important diA'erence from Eq. (4) is that
the flux V has not been specified. On sufficiently large
length and time scales, the flux 9 cannot be modeled by a
noise g with correlations as in Eq. (2), as a result of the
physical process of "sticking on the sides" of surface
features. This process generates overhangs and voids in

the film, violating the volume conservation embodied in

the surface diffusion dynamics of Eq. (I). If overhangs
are significant, then the scaling properties of the interface
are expected to be those of the KPZ equation. %'hat has
not yet been adequately addressed is the question of when

overhangs are important and the physics of the crossover
[g].
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Given the above theoretical reservations regarding Eq.
(I), we introduce a model to investigate these issues
simulationally. To motivate our choice of model, let us
start with a discussion of the models of Das Sarma and
Tamborenea [9] and Wolf and Villain [3], which we shall
refer to as the DT-WV model. In this model particles are
dropped at a random value of x]] onto the top of that
column so that the height at x[] is increased by 1. At this
point the just-dropped particle is relaxed, moving to the
top of a neighboring column if it increases the particle's
coordination. In d= 1 the width of the surface grows as
t~, p 0.365 for t&&L=, close to the value p= —„' of the

linear version of Eq. (I). Similarly, the width saturated
at long times at a value proportional to L', with a close to
the a= — of the linear theory. This model suffers from

two defects which render it unsuitable for addressing the
full range of MBE dynamics. First, the particles drop
directly onto the top of a column, bypassing an arbitrary
number of particles in neighboring taller columns on the
way down. This "drop-through" rule is in contrast to the
drop rule of the ballistic aggregation model [10], where
the dropped particle sticks as soon as it encounters any
particle of the aggregate. We emphasize that this stick-
ing on the side is physically correct and would be present
in any experiment or realistic (molecular dynamics, say)
simulation [11] with finite-range forces. The second de-
fect is that relaxation is allowed to occur between near-
est-neighbor columns regardless of the difference in

heights involved. This corresponds to an extremely aniso-
tropic and unphysical diffusion, where diffusion is finite in

the directions parallel to the substrate but infinite in the
transverse direction. Note that both of these defects arise
from the solid-on-solid (SOS) restriction which is at the
heart of the DT-WU model. Whereas the SOS constraint
is appropriate in some contexts, including some models of
KPZ-type growth [12], in the present case it does not
serve our purposes, since it enforces a symmetry (volume
conservation, on average) not present in the physical situ-
ation and we are interested in probing the dynamical
violation of this symmetry.

We now turn to a model of ideal MBE growth in which
both surface diffusion and deposition are treated physical-
ly. In this model, the drop-through rule is replaced by
that of ballistic aggregation, where the dropped particle
sticks upon first encountering the aggregate, either below
or to one side. We also adopt a more physical surface
diffusion rule, wherein a randomly chosen surface (not
fully coordinated) particle moves to a new position chosen
from among the best-coordinated sites in a hypercubical
box with sides of length 2Lt~+ I (in all d+ I dimensions)
centered on the particle s current position. The diffusivity
is governed by L» and D, the number of diffusion steps a
surface particle performs on average in the time it takes
to lay down a monolayer, and sca)es for small D as
L»D ' —. This surface diffusion is not to be confused with
height diffusion, which has also been studied [13] in the
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I'IG. l. Width vs average height for the BASD model, aver-
aged over nine runs, with varying L& 1, 4, and 8. Other pa-
rameters are L 500, D 5.

context of ballistic aggregation drop rules. We claim that
this new model, ballistic aggregation with surface diffu-
sion (BASD), is a physically correct analog of ideal M BE
growth and should correctly describe the statistical prop-
erties of surfaces formed in this manner. Furthermore,
while other more realistic models involving activated hop-
ping [14] could in principle elucidate the issues posed,
their computational complexity makes them unsuitable
for a detailed study of scaling properties.

The results of simulation of our BASD model in I+ I

dimensions for varying L» are presented in Fig. l. After
a short transient, there is a regime, lengthening with L»,
where w grows with time, apparently as t~, with p=0.25
for the larger Ltq. Then there follows a period of rapid
growth of the width, after which power-law growth again
sets in. This latter regime then terminates in a saturation
regime. The aggregate in the first power-law regime is
almost perfectly dense, with essentially no defects or
overhangs. After the crossover, on the other hand, the
aggregate resembles a coarsened version of a standard
ballistic aggregate. We thus interpret the first power-law
regime as representing surface diffusion scaling, whereas
the second power-law regime and subsequent saturation
are described by the KPZ equation.

One interesting and unexpected feature to note in Fig.
1 is the sharp rise in width separating the two regimes.
This is in contrast to the results of an exactly solvable
linear model with both V-h and V h terms, where the
crossover is much smoother. We have performed a data
collapse of this crossover, rescaling width and time (or
equivalently average height) to overlay the data for vari-
ous L», presented in Fig. 2. This collapse indicates that
as long as L» is larger than a few lattice units, the cross-
over is governed only by L». While our values of L» are
not yet suSciently large to determine the asymptotic scal-
ing of the crossover time, t, . with L», it roughly behaves
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FIG. 2. Collapse of scaled width vs scaled height for the
BASD model, averaged over nine runs, for LD 5, 6, 7, and 8.
Other parameters are L 500, D 5.

I'IG. 3. Elfective P vs average height for the WV-ST model,
averaged over 1000 runs for Lg l, 2; L l000.

as t, . -Lg~ in the range studied.
Another surprise is the value of P characterizing the

surface diffusion regime. The data collapse in Fig. 2
would seem to indicate that P is approaching a value of
=0.25 with increasing LI&. While we would not expect
P —', , since A, 4 is zero, it would appear that we are not
seeing the P —„characteristic of the linear version of Eq.
(I) either. In fact, the apparent short-time exponent of
the DT-WV model itself seems to vary strongly with LI&.

This is illustrated in Fig. 3, where the effective P
=tllogwl|I logh, obtained from an average over IOOO

runs, is plotted versus time for the DT-WV model with

LI& I and 2. Such an effect is seen in the data of Ref.
[9] [see Fig. 3(b) therein] though it was not commented
on there. A value of P of 0.25 would seem to indicate
that the Edwards-Wilkinson-equation (the X~ 0) version
of the KPZ equation is relevant here. It is hard to under-
stand why a V'-h would be generated, since the chemical
potential driving surface dift'usion should be independent
of h. A possible explanation might be that lattice-pinning
effects [I 5] are responsible. Clearly this issue bears fur-
ther investigation.

The above implies that Eq. (I) is not an appropriate
description of the physics. On short length scales, the
governing dynamics is as yet unclear. On length scales
larger than a diffusion length, the physics is that of the
KPZ equation. This is so despite the absence of desorp-
tion. It is important to understand the origin of the terms
in the continuum KPZ description of our BASD model.
They do not arise from any explicit gravitational force or
tendency for aggregated particles to move downhill.
Rather, they arise from sticking on the sides leading to an
h which depends on the local slope, since the larger the
slope, the higher up the next particle will stick. This pro-
duces the nonlinear (Vh)'-term in Eq. (3). Upon coarse
graining this term gives rise to a V-h term, as shown by

renormalization-group studies [5]. Note that even if our
speculation of the generation of a V-'h term in the surface
diffusion regime is valid, the KPZ nonlinearity is forbid-
den by the h —h symmetry.

A fina) point is the porosity of the films produced by
the BASD model, which is not typical of real MBE films.
It is important to note that growth conditions in the labo-
ratory are carefully chosen to produce "good" films. For
example, films are typically grown at high temperatures
where diffusion lengths are of the order of microns. This
is consistent with the initial compact nature of the SD re-
gime. Furthermore, the width in the SD regime grows
surprisingly slowly (and if the Edwards-Wilkinson-type
scaling is maintained in 2+1 dimensions, the width
would in fact only grow logarithmically). Also, interrupt-
ed growth is frequently employed to improve the film

quality. Low-temperature films do become porous if
grown too thick I. l 6]. In fact, the sharp experimental dis-
tinction between "good" and "bad" films is consistent
with the violent nature of the crossover.

In conclusion, we have seen how a physically reason-
able model for ideal MBE growth leads to a crossover
from SD to KPZ scaling on a time scale which grows
with diffusion length. Furthermore, the scaling in the
surface diffusion regime is not in accord with the predic-
tions of the previously proposed continuum theory. We
maintain that similar results would obtain from a study
of any physically correct model, including more realistic
Monte Carlo or molecular-dynamics simulations. We be-
lieve further study of our BASD model, especially of the
(2+ I )-dimensional case, will prove fruitful.
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