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Eigenstate Assisted Activation
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Transmission through an opaque static barrier is greatly enhanced by an alternating potential. If a
particle is activated to its lowest instantaneous eigenenergy, it is "trapped" and will follow the alternat-
ing potential to the top of the static barrier ("elevator eA'ect").

PACS numbers: 73.40.6k

(l) Alternating potential and its implications—Tunneling and activation in an alternating potential
are important in a variety of physical problems [1-4]:
field emission, interband breakdown, charge exchange be-
tween deep-lying impurity centers in semiconductors, tun-

neling chemical reactions, 3osephson junctions, resonance
tunneling [5], Coulomb blockade [6], the destruction of
adiabatic invariants [7(a)]. The study of the alternating
potential may also be useful for stationary many-body
tunneling and evaporation, if the latter is reduced to an

approximately single-particle problem. Then some of the
degrees of freedom adjust to the progress in particle es-

cape and yield an effective time-dependent potential [2].
Also, the characteristic time T of an alternating potential
may be related to an effective temperature 9-h/T.
Hence, an alternating-potential study may be helpful for
the quantum transport problem (e.g., variable-range hop-

ping conductivity).
An extensive and accurate study of particle transmis-

sion is also important in view of the experimental rates
often being, by dozens of orders of magnitude, above the
theoretical values [8,9], and even its upper bound [10].
Tunneling in an alternating potential has been extensively
studied [1-3,10,11]. However, this paper for the first

time simultaneously considers tunneling and activation of
a particle, incoming with energy 0, through a stationary
barrier of height 8' and length L, in a nonharmonic po-
tential, alternating with the characteristic time T (see
Fig. 1). I study the most interesting case of an opaque
barrier [7(b)] (Lv AW»1, t) W = W —0) and adiabatic
potential with a small energy quanta (1/T«hW); in this

paper the particle mass is 0.5 and h =1. I prove that
there are three types of transmission. When T» tent

(taL —L/JAW is the characteristic Buttiker-Landauer
tunneling time [21), the potential is so slow, that the
transmission rate is little diff'erent from its stationary
tunneling value. When T ~ t ~t, a particle may rise to the
lowest instantaneous resonant level co„created by the adi-

abatic potential below the top of the stationary barrier.
Then the particle is trapped in such an instantaneous lev-

el. When the level is pushed up by the alternating poten-

tial, the trapped particle stays in the "elevating" level and

follows it to the top of the stationary barrier ["elevator
resonant activation" (ERA)]. The net effect is an ex-

ponential enhancement of the total transmission probabil-
ity. Alternatively, a particle may be activated to a cer-
tain lower energy co, and then tunnel [activation assisted
tunneling (AAT)l. All the options have exponentially
small probabilities of being realized. Their competition is

similar to the one in the partition function between
different phases. The change (with T or ft) from one op-
tion to another resembles a phase transition.

Thus, a single time-dependent opaque barrier may be a
model for exponentially enhanced space-time Auctuations
and transmission (and thus diffusion) rates. This may

suggest their common origin. The results are very gen-
eral. They are valid for the penetration of any waves

(quantum, electromagnetic, sonic, hydrodynamic, etc.)
into a classically forbidden region.

First I demonstrate the approach with a one-di-
mensional (I D) transmission. Then I sketch it for a gen-
eral case.

(2) Exact solution An opa.q—ue barrier is long [7(b)]:
L» I/AW. In order to have the barrier opaque at all

times, one should consider a relatively short alternating
potential. I demonstrate the solution and its physics in

the extreme case of a point potential F(t)b(x) —Then a.
particle is activated at the point x =0 only. Furthermore,
it is activated from and into the set of "old" stationary
functions. One may study the dependence of the
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FIG. I. Types of transmission: Tunneling (dotted line),
AAT (dashed line), and ERA (open circles, activation; solid cir-

cles, elevation).
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transmission on their energy co and explicitly follow the
competition between diA'erent options. The Schrodinger
equation reads

tions, I finally obtain b(co) everywhere:

PM

b(co)-g[g(co)/F[t„(co)]]exp i t„(coi)dcoi (7)

i y = —y"+ [V(x) —F(t)b(x)]y, F[t„(co)]=g(co) =2JW —co. (8)

where y= By/—Bt, y'=By/Bx If. V(~ ~) =0, the plane
wave, incoming from x = — with energy 0, generates
reAected plane waves at x — and transmitted plane
waves at x +. Their energy co may be arbitrarily
due to the alternating potential. Suppose the stationary
barrier transforms plane waves exp(+ ix Jro) at x = ~ ~
into wave functions y —(x), which satisfy the equations

y "+(co —V) y„—=0. (2)

At x +~ there are only transmitted waves y„+. At
x —~ there are the incident wave y& and reflected
waves y . At x =0, one matches y(t, +0) and y(t, —0)
according to Eq. (1). When, e.g. , x &0, one obtains,
after simple transformations,

y(x, t) =yo (0) b(co) ly+(x)/y„+(0)]exp( —icot)dco,

(3)

where b(co) satisfies the integral equation

g(co)b(co) — F*(co —co') b (co')dco'

g(co) =[ln[y (0)/y+(0)]]',

F*(co) J F(t)exp(icot)dt/2x.

(5)

The exact Eqs. (3) and (4) reduce the problem in two
variables (x, t) to a ID integral equation. By Eq. (3), the
wave function y& (0) reaches x =0. There it is activated
to the energy co with the amplitude b(co). Then it tunnels
at this energy co to x &0 with the stationary tunneling
amplitude y„+(x)/y+(0).

In a static potential F(t) =const, by Eqs. (4) and (5),
b(co) =(I —F/g) 'b(co —0). This implies a tunneling
resonance when F=@(D). In the WKB case [7(b)]
@=24W—0, and the resonance condition is

(6)

0) WKB approximation. —Since [see Sec. (I)]
TAW»1, Eq (4) allo. ws for the WKB approach. It
must be refined compared to the conventional one [3,4] in
virtue of nonlocality and inhomogeneity of Eq. (4). So,
first I find the complete set of homogeneous WKB solu-
tions. Then I determine the (non-WKB) inhomogeneous
solution in the vicinity of 0, where g(co) =g(Q) allows
one to solve Eq. (4) by Fourier transformation. As usual
in the %KB approach, the regions where the %KB and
co=0 solutions are valid overlap. By matching the solu-

Each term in Eq. (7) is a homogeneous WKB solution; by
Eqs. (6) and (8), co is the instantaneous resonant energy
at the moments t„(co)

If max, F(t) =F(0) =g(co„), then co& co„provides a
real t„(co). By Eq. (7), this implies that the activation
amplitude oscillates with the energy co) co, rather than
(as usual) exponentially decaying with it. This is the
main new point. If a particle is activated to the lowest in-
stantaneous eigenstate co„=W Fo/4—, Fo =F(0), it trav-
els from co=co, to the barrier top co=8'with the "eleva-
tor" of a time-dependent resonance (ERA). (Of course,
this happens due to the long lifetime in the adiabatic lev-
el. ) Efl'ectively, the particle is lifted to W by the activa-
tion to W Fo/4. W—hen Fo exceeds the critical value

F, =2vAW, then b(co) in Eq. (7) has a zero activation
energy.

If co(co„then t„(co)is a complex number. A con-
venient example to work with is the symmetry F( —t)
=F(t). If F(t) =Fi(t /T ), then t„(co)is purely imagi-
nary for co ( co,:

t„(co)=i Tr „(co),
(9)

F(ir„T)=Fi( —r„)=2JW—co, r„&0.
So, Ti„is the "resonance moment" for the energy co

and the effective potential —F(it)b(x) = —Fi ( —t /
T )b(x). The activation energy in Eq. (7) is related to
minr„=r. Substitute b(co) from Eqs. (7) and (9) into

Eq. (3). Since the barrier is opaque, use the WKB [7(b)]
y+. After straightforward (albeit somewhat tedious)
technical calculations, one obtains the total transmission
amplitude P(t) from x =0:

P(t) -„exp[p(co)]dco, (10)

where xo(co) & 0 is the turning point V(xo) =co.
(4) Tunneling ART and ERA.—In an opaque barrier

ip(co) i is large, and only specific co significantly contrib-
ute to P. The largest Rep(co) determines the activation
energy E~ = —Re(d lnP/dT). Consider Rep(co) when

Fi( —r ) monotonically increases with r, and t =0.
Then r(co) monotonically decreases with co to r =0 at
the branching point co„;in its vicinity r ~ (co, —co) 't .
When co& co„then, by Eq. (8), r(co) is imaginary. The
change in the second term in Eq. (11) is related to the
Buttiker-Landauer time [2]

t xp(ru)
r aL(co) =„dx/2JV(x) —co.

t xp(co)
p(co) = —T r(coi)dcoi —

i V(x) —coi 't'dx icot, —
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Since both the "velocity" (V —ru) 'i and the tunneling
distance xo(to) decrease with co, raL(r0) may increase
or decrease with m. In a characteristic general case,
Rep(ai) is schematically presented in Fig. 2. When T is
suIIiciently large (e.g. , T=Ts in Fig. 2), then Rep(co) is

maximal at co=A, and "conventional tunneling" dom-
inates in P in Eq. (10). When T ~ T7 & Ts, the Rep(co)
maximum shifts to co~ 0, where, by Eqs. (9) and (I I),

F[i r aL(ni) Tl =F)'[—ri'iL(ai)l =g(co),

Consider a specific example [12l of

Fo
V(x) = W —a-x —, F =

cosh(t/T)
(13)

Then AAT exponentially loses to ERA, and

P e-xp( —zhW/4a)+exp[ —TA W[iI —0.5sin(2iI) ll,
(14)

iI =arccos(Fo/2 JAW ) .

i.e., 6 is the energy of the instantaneous resonance with
the imaginary retardation time ( i ra—LT) By .Eq. (12),
it is independent of the incident Q. When T = T6, the
main contribution to transmission comes from particles
which are activated to F36 and tunnel with this energy
thereafter (AAT). The transition to AAT occurs in a
narrow interval hT/T- I/QT of T=T7 and is followed

by a quasijump in dE~/dT= —d lnP/dT (see Fig. 3).
When T=Tq & T6, the p(ni) maximal value shifts to
another AAT energy coq. The shift is followed by a rapid
change in F~. Finally, at T=T2 AAT changes to ERA
(again with the quasijump in dE~/dT), with the trans-
mitted ai= W and Eq =Jn"'r(ro~)dni~. The competition
of exponentially small transmission probabilities in P is
similar to the competition of diA'erent phases in the parti-
tion function, with lnP playing the role of the free energy.
This similarity is even more pronounced in a many-body
theory [gl.

The dependence E~ (0 ') is similar to Eq (T). The
quasijump in the first (or second) derivative implies a
resonance-type shape of the second (or third) derivative.
These are the resonances predicted in Ref. [I Il.

Re P(~)

The second term corresponds to ERA. The tunneling-
ERA phase boundary is iI

—0.5 sin(2rI) =n/T.
(S) Generalization U—ntil now I have considered the

special case of an alternating potential —b(x)F(r) to an-
alyze the accurate solution. However, the approach and
the results may be generalized to 2D and 3D cases, as
well as to the penetration of classical (electromagnetic,
sonic, hydrodynamic, etc.) waves into the region forbid-
den in geometrical optics. I studied an alternating poten-
tial short compared to the length of an opaque barrier.
In the leading approximation this led to a 6 function. In
higher dimensions a 6' function may be replaced by a
point potential, which has eigenstates; it was introduced
in Ref. [13l. Then all of the above approach readily
works. It verifies tunneling resonances and elevator ac-
tivation [14l.

ln summary, transmission through an opaque station-
ary barrier and an alternating potential crucially depends
on the alternating time T (see a typical Fig. 3). When
T & T7, tunneling dominates and the activation energy
E~ =0. When T decreases, a quasikink at T=T7 is fol-
lowed by AAT with T-dependent E~(T). A quasijump in

E.~ at T = T~ leads to a new AAT with a diferent
E~(T). Finally, a quasikink at T=T2 leads to ERA with
T-independent E,i. The dependence E~(Q ) is similar
to E,g(T).
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FIG. 2. A characteristic Rep(cu) for ditferent T's, which in-

crease with their subscript numbers.
FIG. 3. Activation energy E,& as a function of T for p(co)

from Fig. 2.
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