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Interstitialcy Model for Condensed Matter States of Face-Centered-Cubic Metals
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The special configuration and dynamics known for interstitialcies in face-centered-cubic metals are ex-
ploited to construct a model giving all the thermodynamic properties of crystalline, liquid, and amor-

phous states in a unified way. A large diaelastic softening of the shear modulus with defect concentra-
tion is derived. This leads to a softening of the interstitialcy formation energy, which, taken together
with a large entropy contribution from the interstitialcy resonance modes, makes the model, which con-
tains Lindemann's law, viable for quantitative calculations of thermodynamic properties.

PACS numbers: 6 I.70.Bv, 61.42.+h, 64. I O.+h, 65.50.+m

A considerable amount of detailed information about
the configuration and dynamics of interstitials in face-
centered-cubic metals, particularly copper, has become
available in recent years. We use this to derive an inter-
stitial-concentration-dependent Gibbs free energy, giving
all the thermodynamic properties of crystalline, liquid
(melts), and amorphous condensed matter states for these
materials in a unified way. For the present purposes, we

do not distinguish between amorphous and glassy states.
We suppose crystalline properties to be given. Many of
the properties of amorphous materials have already been
rationalized in terms of a phenomenological two-level-
system (TLS) tunneling model [1,2] but the question of
the identity of the tunneling entity remains open. The
TLS model supposes the existence of intrinsic, localized,
two-level excitations strongly coupled to the lattice with

energy differences A between levels with a nearly uniform
density of states. This distribution may be supposed to
arise from strain interactions [3] between tunneling sys-
tems at sufficiently high concentrations. The model does
not account for a pronounced reduction of the shear
modulus often observed [4,5]

It should be expected on topological grounds that
monatomic condensed matter in stable mechanical equi-
librium and metastable thermodynamic equilibrium con-
figurations should consist of crystals containing intrinsic
defects: vacancies, interstitials, dislocations or disclina-
tions, or combinations of these. In fact, melting theories
have been offered for each of vacancies [6], interstitial-
vacancy Frenkel pairs [7], dislocations [81, and disclina-
tions [9]. But dislocation energies are of the order of
several eV per atomic length for common materials (for
example, Cu) so that even the smallest stable loops would
seem to have energies prohibitively high for generation by
thermal activation. This difficulty becomes even more
severe for disclinations. The properties of vacancies have
been well studied in many materials. In particular, the
ratio of formation entropy to volume is known to be
insufficient to allow for catastrophic vacancy generation
at the melting point [10]. Since these are the only intrin-
sic defects known from solid-state physics, we should then
expect interstitials to be the source.

In an attempt to unify condensed matter states, Frenk-

el [6] recognized the need for intrinsic defects and con-
structed a theory, but it was a theory for "holes, " or va-

cancies. Lennard-3ones and Devonshire [7] gave a theory
for point interstitials, in which atoms were supposed to
jump thermally from normal lattice sites to interstitial
sites. The defects in this case are in fact Frenkel pairs,
leading, among other things, to homogeneous melting,
contrary to the heterogeneous melting known from exper-
iment [11,12]. Also, defect concentrations of the order of
50% inconsistent with observed volume changes are re-

quired, and the theory has not enjoyed general accep-
tance.

Stillinger and Weber [13] have made computer calcu-
lations using a potential which produces a bcc crystalline
ground state. They find thermally excited states which

are Frenkel pairs with the interstitial in a split configu-
ration and a defect softening, or mean attraction between
defects. They use these facts to construct a simple melt-

ing theory which shows that defect softening is basic to
the fact that the solid-liquid transition found is thermo-
dynamically first order.

In the earliest theoretical calculations [14] made for

copper it was found that the interstitial has a higher for-
mation and a lower migration energy than does a vacan-

cy, but it was not possible to determine the stable intersti-
tial equilibrium configuration. We now know [15,16]
that the equilibrium configuration for an isolated intersti-
tial atom, at least in Cu and Al, is not a pointlike intersti-
tial with cubic symmetry as for a vacancy, but rather a
linearlike extended dumbell interstitialcy configuration
(two atoms trying to occupy the same lattice site) with

tetragonal symmetry. That is, the stable and saddle-point
configurations are reversed for an interstitial atom from
that for a vacancy. This has far-reaching consequences.
In particular, the interstitialcy configuration has a strong
coupling to external shear stress, low-frequency resonance
modes [17], and an extended linear stringlike character
which can lead to large entropy eAects. It has been

pointed out by Schober [18] that many features of low-

temperature glass anomalies (low-frequency vibrations,
relaxation processes, and general TLS behavior) are also
observed in crystals after irradiation at doses much lower

than those needed for amorphization.
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We suppose that the volume (Vp), bulk modulus (Bp),
shear modulus (Gp), and their pressure derivatives (8'
and G'), evaluated for the static lattice (no thermal or
zero-point vibrations), are given, and the Helmholtz free
energy F=F(V,e), where e is the shear strain, can be ex-
pressed in terms of these parameters. For high tempera-
tures, using a quasiharmonic Einstein approximation for
the vibrational free energy, we then have the free energy
of the perfect crystal F~ given by

F„=F(V, e) + 3JVk T I n [h toF (V)/k T] .

For the change in the free energy BF of the crystal con-
taining n defects, where c =n/N, we must add (I) the
work F„, necessary to create a concentration c of intersti-
tialcies, (2) the change bF, , of the vibrational free energy
resulting from the change in the frequency spectrum,
and (3) a configurational free energy F, given by F,
= —TASc = —Tnk [I + InzN/n]. The latter term differs
from the usual small-c expression for the configurational
entropy only by the factor z, put in to take account of the
fact that the interstitialcy can be oriented along any of z
directions (z =3 for fcc lattices).

We require F„, to be given in terms of the independent
variables and assume that this dependence can be ex-
pressed in the form Sf /Bc =a~GO+ azBO, where

f=bF/N, O is the volume per atom, and a~ and az are
constants presumed to be the same for the same crystal
structure. This is the principal assumption of the present
work. We further expect that az/a~ && I (and find az/
a~ =0.03 later in a fitting procedure for Cu). This means
that the work is mainly that of a shear deformation, as
supposed by many [19-22]. Support for this form also
comes from computer calculations using the embedded-
atom method of 3ohnson [23], who finds that defect ener-

gies have negligible dependence on the cohesive energy,
vary only slightly with the bulk modulus, but are linearly
proportional to the average shear modulus. For a concen-
tration c of interstitials, f„, becomes

f„,= [a(GO+a28O]dc.40
The vibrational frequency spectrum of fcc crystals con-

taining isolated interstitialcies has been described in de-
tail by Dederichs et al. [17]. They find both low-fre-

quency resonance modes and high-frequency local modes.
The results depend a bit on the interatomic potential
chosen. The dumbell displacements are aligned in (100)
directions and are strongly coupled to atoms in the close-
packed (110) directions, so that the configuration consists
of a (100) dumbell extended with appreciable displace-
ment chains for several atoms along (110)directions. For
the present high-temperature approximate calculation, we
replace the lattice frequencies by the single Einstein fre-
quency co~-, the resonance modes by a single coR, and the
loca) modes by a single col. There are five resonant and
six local modes for each interstitialcy. Since the reso-
nance and local modes come at the expense of the lattice

G(V, e,c) =G( V, e) +a~„(B G/de )(O/Op)dc, (3)

or BG/Bc=a~(O/Op)B G/Be . The shear modulus in a
crystal along planes separated by a distance d must be
periodic in displacements b, which repeat the lattice
structure. Assuming the simplest periodic even function,
we take

G =G(V, c)cos2trx/b Gcos2nde/b,

where e=x/d The. n B G/Be = —PG, where P
=4tr d /b . As a first approximation, taking O/Op=I,
this leads to

G =G(V, e)exp( —a~Pc) (4)

for the concentration dependence of the shear modulus.
The result, Eq. (4), is basic for what follows. It de-

scribes a large diaelastic softening of the shear modulus
and of the free energy with defect concentration. For
d-b, a~ —I, P =4m -40, so that a concentration of a
few percent of interstitialcies should greatly reduce the
shear modulus. The only material for which the diaelas-
tic effect for interstitialcies is known for all elastic con-
stants is copper, for which the values d(lnCJ)/dc = —31,
—15, and 0 have been measured for C44, C'=(C~~
—C~z)/2, and 8, respectively, at low concentrations [15].

The change in Gibbs free energy 0 is obtained from F
by Q=F+pV. At constant pressure, all the frequencies
change as a result of the concentration-induced volume
change, adding a term 3NkTlntoF(V)/tot:(Vp) Also we.
may expect cop to be reduced. On the other hand, for
large concentrations, the stringlike extensions of the in-

terstitialcy may be inhibited, or "pinned" by neighboring
interstitialcies. A quantitative calculation of these effects
would be difficul and lengthy. For the time being, we

bypass these important considerations with a very crude
estimate. If the interstitialcy chain were to be replaced
by an elastic string of length L pinned by an intersti-
tial, then we would expect the frequency glott =2trv/L
=(2nv/Lp)(i+a~pc), where v is the sound velocity, to
be doubled when Pc —1. We will simply use a linear in-

terpolation formula with tott =rottp(l+)j. a~pc) and expect
)i, & I. (A fitting later for Cu gives ) —0.2.) But, also,
these strings have higher modes of oscillation. Again we
approximate this effect by assuming that harmonics exist
as in a string, so that Into&. /ron in Eq. (2) is replaced by
g~ ln(y'/m), where m is an integer, y'= v/(I +APc), and
v =rot, /rott. The sum is well approximated over the range
of interest by 0.87y' —1.05.

modes, the change in the free energy per particle becomes

f=f„,—kTc[5Inrot/ton+6lnroE/tot +(I+Inz/c)j. (2)

Supposing that the shear strain dependence of B may
be neglected, the shear modulus G is obtained from its
definition G—:(B F/Be )/NOp, with Eqs. (I) and (2), to
be
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Using V 89/Bp and coF (V)/rut (.Vo) = (Vo/V) ", the (normalized) Gibbs free-energy diA'erence y is then given as a
function of (normalized) concentration x for different (normalized) temperatures t by

t'
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FIG. l. The (normalized) Gibbs free-energy difference & as a
function of the (normalized) interstitialcy concentration x for
different temperatures I. The temperature is normalized to the
melting temperature. The parameters are chosen for copper.

where y =[69(1 q)P]/lVGOVo, x =a~Pc, t =kT/aG&,
t'= T/T„„and where we have defined a by a~GV
+a28V =aGV, 1

—
q =a~/a, a =X/a(l —q), and

=za(l —q)p(t. /cot )". ln Eq. (5), G' has been replaced
by a shear Griineisen gamma y with G' =(2)+

& )G/8
[10].

The six parameters (a~, a~, P, v, X, and tot/rut ) have
been fitted to copper, for which the most data are avail-
able, by the following procedure. For a range of assumed
values of v near that estimated theoretically [17] and
determined experimentally [15], the requirement that the
interstitialcy concentration be at least an order of magni-
tude less than the vacancy concentration [24] just below

T„, is imposed. This allows a= 1, for 2G =C44+C', and
the formation energy of the isolated interstitialcy is

QGpAp =3.94 eV. This is also in good agreement with
stored energy measurements [25]. cot /tot. was taken to
be 1.73 from theory [17]. No general solution to the
equations is found for P & 30, and a trial value of 35 has
been chosen. Then fitting the measured entropy change
of 1.1Sk at the melting temperature T„, determines

q =q(v), k(v), and x(v). Choosing v=5.3+7% leads
to values of X=0.206+ 10%, q=0.075+ 22%, and x
=3.0~ 17%, so that c(T„,) =0.0927+ 17%. With this
choice of parameters, the results shown in Fig. 1 are ob-
tained. These parameters may be expected to change
slightly as more and improved data become available.

Three distinct regimes are found by setting d(69)/dc
=0. For low enough temperatures only one solution
C~(T) is obtained which gives the equilibrium interstitial-

cy concentration in the crystal depending exponentially
on temperature with the isolated interstitialcy formation
enthalpy as the activation energy. For temperatures near
the melting temperature, there are three solutions, CI,
C., and C&. We interpret C&(T) as the equilibrium
liquid state, with C2 the concentration at which 6'9 has a
maximum. For high enough temperatures, C~(T) is the
only equilibrium stable state. We interpret frozen-in con-
centrations C~ to represent amorphous states. One sees
from Fig. 1 that there is a possible supercooling range of
about 15% below T„,. An improved approximation for
Eq. (4) would increase this somewhat. This may be com-
pared with a measured [26] range of 17% for 15 to 50 pm
Cu droplets. The predicted superheating range is smaller.
The asymmetric and inhomogeneous nature of melting is

to be understood from the fact that interstitial generation
is nucleated at surfaces, dislocations, or other shear strain
centers.

For temperatures just below T„„ the model predicts
C I

—3 x 10 ' so that a shear modulus softening of
—10 occurs. With currently available ultrasonic sen-
sitivities of —10 for velocity changes, it should be pos-
sible to detect this etTect to an accuracy su%cient to
determine the magnitude, activation enthalpy, and entro-

py for Isolated interstitialcies. There are currently no

measurements of the interstitialcy entropy available, and

enthalpies are available for only a few materials by sub-

traction of vacancy contributions from stored energy
measurements of irradiated materials. Ultrasonic mea-
surements may provide both a test of one prediction of
the model and values for interstitialcy activation enthal-
pies and entropies.

It is to be noted that melting occurs at the temperature
I;„where 6Q and 8Q/dc =0 [y and dy/dx =0 in Eq. (5)].
This gives a relation between T„, and the isolated intersti-
tialcy formation enthalpy H~ =aGpOp which is equiva-
lent to Lindemann's [27] melting criterion, T„, ec mO-

x 0-' ', where 0 is the Debye 0 and m is the atomic mass,
tound by supposing that melting occurs when atomic vi-

brational displacements reach a critical value. When
note is taken of the fact that 0 is dominated by shear dis-
tortions (two pure shear waves and a longitudinal wave

which also has a large shear component), so that
0 —GO 't'/m, one obtains T„, ~ G ft. Some minor devia-
tions are to be expected if some of the parameters, for ex-
ample Go/80, vary from one material to another in the
same structure class. Further, the physical basis (60 =0)
is on sounder ground than that of the original Lindemann
criterion, and also one obtains here the proportionality
constant in Lindemann's law. Using the fit to copper, we
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have HF =aGOO =33.7kT„,. Although only data for Cu
have been fitted here, the existence of an effective Lin-
demann law gives confidence that fits may be achieved for
a wide range of materials. The extent to which the model
can be extended to other materials will be the subject of
further investigation, but we note here that split intersti-
tial configurations are also found in hcp and bcc struc-
tures [17],and it should be possible to include compounds
within the same formalism by including suitable addition-
al terms in the free energy. More details and compar-
isons with experimental data, discussion of low-tem-

perature behavior, and kinetics of the model will be pub-
lished elsewhere.

In summary, a large diaelastic softening is predicted
for crystals containing interstitialcies. The thermo-
dynamic properties, and their discontinuities at the melt-

ing point, can be computed as functions of temperature,
pressure, shear strain, and concentration. The thermo-
dynarnic properties are obtained regarding liquids as

crystals containing a few percent of interstitialcies (9.3%
for Cu at T„,) in thermal equilibrium (t]89/|)c =0), while

amorphous materials result for a fixed oncentration co of
frozen-in interstitialcies. The concentration co depends
on the method of preparation of the material. The ex-
istence of equivalent dumbell orientations leads to the

low-temperature properties expected for a TLS tunneling
model. The tunneling entity is the interstitialcy config-
uration. The model appears to be viable, giving results
which are analytic and quantitative, while providing a
unified view of condensed matter states.

Salient features of the model are that the interstitialcy
configuration is extended, strongly coupled to shear
stress, with low-frequency resonance modes providing an

unusually large entropy per defect. The shear modulus G
carries the burden of providing the volume, shear strain,
and concentration dependence needed for a thermo-
dynamic treatment. Such an approach avoids many of
the diScult technical problems involved in computer cal-
culations of finding and using suitable many-body poten-
tials. The crystalline elastic constants already contain
this information, have often already been calculated from
first principles in solid-state physics, and in any case are
readily available from ultrasonic measurements with even

higher accuracy.
This work was supported in part by the U.S. Depart-

rnent of Energy under Grant No. DEFG02-91ER45439,
the Bernd T. Matthias Visiting Scholar Program at Los
Alamos National Laboratory, and the University of Illi-
nois.

[I] P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos.
Mag. 25, 1 (1972).

[2] W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[3] M. W. Klein, B. Fischer, A. C. Anderson, and P. J. An-

thony, Phys. Rev. B 18, 5887 (1978).
[4] B. Golding, B. G. Bagley, and F. S. L. Hsu, Phys. Rev.

Lett. 29, 68 (1972).
[51 P. R. Okamoto, L. E. Rehn, J. Pearson, R. Bahdra, and

M. Grimsditch, 3. Less-Common Met. 140, 231 (1988);
in Proceedings of the Conference on Solid State Amor

phi zing TransformationsL, os AlamosN, ew Mexico,

1987, edited by R. B. Schwarz and %. L. johnson (EI-
sevier Sequoia S. A. , Lausanne, 1988).

[6] J. Frenkel, Trans. Faraday Soc. 33, 58 (1937); Kinetic

Theory of Liquids (Oxford Univ. Press, New York,

1946).
[7] J. E. Lennard-Jones and A. F. Devonshire, Proc. R. Soc.

London A 169, 317 (1939); 170, 464 (1939).
[8] R. M. J. Cotterill, in Ordering in Strongly Fluctuating

Condensed Matter Systems, edited by T. Riste (Plenum,

New York, 1980).
[9] H. Kleinert, in Gauge Fields in Condensed Matter

(World Scientihc, Singapore, 1989), Vol. Il.
[10] J. C. Slater, Introduction to Chemical Physics (Mc-

Graw-Hill, New York, 1939).
[I I] J. Y. Tsao, M. J. Aziz, M. O. Thompson, and P. S. Peer-

cy, Phys. Rev. Lett. 56, 2712 (1986).
[12] S. R. Phillpot, J. F. Lutsko, D. Wolf, and S. Yip, Phys.

Rev. B 40, 2831 (1989).
[13] F. H. Stillinger and T. A. Weber, J. Chem. Phys. 81,

5095 (1984).
[14] H. B. Huntington and F. Seitz, Phys. Rev. 61, 315

(1942); H. B. Huntington, Phys. Rev. 91, 1092 (1953),
[15] 3. T. Holder, A. V. Granato, and L. E. Rehn, Phys. Rev.

Lett. 32, 1054 (1974); Phys. Rev. B 10, 363 (1974); L. E.
Rehn, 3. T. Holder, A. V. Granato, R. R. Coltman, and F.
W. Young, Jr. , Phys. Rev. B 10, 349 (1974).

[16] H. G. Haubold, in Proceedings of the Conference on Fun

damental Aspects of Radiation Damage in Metals,

Gatlinburg, edited by IVI. T. Robinson and F. W. Young,

3r. (National Technical Information Service, Springfield,

VA, 1975), CONF-751006, p. 268; P. Ehrhart, A. G.
Haubold, and W. Schilling, Adv. Solid State Phys. XIV,
87 (1974).

[171 P. H. Dederichs, C. Lehmann, H. R. Schober, A. Scholz,
and R. Zeller, J. Nucl. Mater. 69, 176 (1978).

[18] H. R. Schober, in Phonons 89, edited by S. Hunklinger,

W. Ludwig, and G. Weiss (World Scientific, Singapore,
1989), Vol. I, p. 444.

[19] N. F. Mott, Proc. R. Soc. London A 215, I (1952).
[20] J. T. Holder and A. V. Granato, Phys. Rev. 182, 729

(1969).
[21] H. Suhl, B. T. Matthias, S. Hecker, and J. L. Smith,

Phys. Rev. Lett. 45, 1707 (1980).
[221 A. H. Cottrell, Introduction to the Modern Theory of

Metals (The Institute of Metals, London, 1988), p. 83.
[23] R. A. Johnson, Phys. Rev. B 37, 6121 (1988).
[24] R. O. Simmons and R. W. Ballu%, Phys. Rev. 129, 1533

(1963).
[25] T. G. Nilan and A. V. Granato, Phys. Rev. 137, AI234

(1965).
[26] D. Turnbull and R. E. Cech, J. Appl. Phys. 21, 804

(1950).
[27] F. A. Lindemann, Phys. Z. 11, 609 (1910).

977


