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New Type of Self-Organized Criticality in a Model of Erosion
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By modeling the process of water erosion we found that river patterns on a surface become invariant
after the whole surface is covered by self-organized percolated rivers. Fractal scalings are confirmed in
the distribution of basin size and in the contour’s geometrical irregularity.
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Mechanisms of creating fractals have been clarified in
various fields of science [1-3]. A remarkable success
may be the discovery of so-called Laplacian fractals
which involve pattern formations in diffusion-limited ag-
gregation, viscous fingering, crystallization, electrodeposi-
tion, dielectric breakdown, chemical dissolution, and bac-
terial colony growth.

Fractal geometry is especially powerful for characteriz-
ing random surfaces such as the Earth’s relief [4] and
porous solids’ surfaces [2]. A lot of attention has been
paid to random surface growth phenomena which exhibit
fractal scalings [5].

Recently, the model of self-organized criticality [6]
(SOC), which was introduced as a model of a sandpile,
has been attracting much attention because it automati-
cally converges to a statistically steady state where criti-
cal or fractal behaviors are found both in space and time.
It is anticipated that a large portion of the fractals in na-
ture may be created by this kind of self-organization.

In this paper we analyze surfaces under water erosion.
We will show that a surface spontaneously evolves into a
kind of critical state characterized by fractal scalings.
The critical state is very different from that of the SOC
model in that the patterns of water flows (i.e., river pat-
terns) on the surface are frozen, namely, they do not
change after the system reaches the critical state. Thus
we have critical behavior only in space.

Landscapes and river patterns are familiar to every-
body but they have not attracted many physicists’ interest
so far. Mandelbrot first showed that coastlines can be
characterized by fractal dimensions [5]. He also graphi-
cally demonstrated that the Earth’s relief is a fractal by
proposing fractional Brownian surfaces as landscapes.
Although the resulting surfaces look natural at first sight,
there is an obvious flaw, that is, no river exists on the sur-
face.

River patterns are also known to be typical fractals
[3,4]. Scheidegger proposed a lattice model of rivers
which is defined on a slope where water on a site flows
randomly to either the left down site or the right down
site [7]. His river model was shown to be identical to the
one-dimensional random particle aggregation model with
uniform injection by regarding the direction of the slope
as the time axis [8]. The model is known to show critical
behavior automatically like the SOC model; for example,
it was proved that the system converges to a steady state

where the distribution of the drainage basin area or parti-
cle mass rigorously follows a power law [9].

For the creation of real river patterns and landscapes
we believe that the effect of water erosion should play the
central role. By this motivation we model the erosion
process on a lattice and simulate the formation of river
patterns.

The model is defined on a two-dimensional triangular
lattice. Each site has two variables, A (x,y), the height of
the Earth’s surface, and s(x,y), the water flow intensity.
For a given initial configuration time evolution is per-
formed according to the following procedures.

(1) Rain fall. —We assume that rain falls constantly
on every site in the amount of s¢ (=1).

(2) Water flow.—For every site (x,y) we find the
lowest value of height in the six nearest neighbors,
min{a(x',y")}, where (x',y') denotes a nearest-neighbor
site. The water at (x,y) flows to the lowest neighbor if
the destination’s height is lower than h(x,y). Applying
this procedure for all sites we can draw a global water
flow pattern as shown in Fig. 1, which we call a river pat-
tern. The flow intensity s(x,y) is defined by the sum of
water flows from neighbors and the rain fall on the site;
so, when the river pattern becomes stationary all rain to
the upstream of (x,y) gathers at (x,p), and s(x,y) is
equal to the size of the drainage basin area for the site
(x,y). (We treat local minimum sites in a separate way
as described later.)

(3) Water erosion.— By the effect of erosion the height
at (x,p) is decreased by 8h(x,y) =FJ(x y))h(x,y)
—min{a(x’,y’'}1, where J(x,y) is the water power which
is defined as

J(x, ) =sx )hlx,y) —min{h (X' y' N1 1)

The function F is a positive and monotonically increasing
function which characterizes the erosion. In the follow-
ing simulation F(J) =C,J/(C>+J), where Cy and C; are
positive constants. In this paper we use C;=0.5 and
Cg =100.

(4) Repeat the above procedures.—Procedures (1),
(2), and (3) constitute one time step.

As seen from the above procedures we assume that the
water is supplied only by rain and is conserved in the flow
process. We neglect the accumulation of sand, so h(x,y)
decreases monotonically.

In procedure (2) we have to treat the local minimum
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FIG. 1. Time evolution of river patterns (above) and contours (below). (a) The initial condition. 4 (x,y) =2000+ N4, where
Nina is a uniform random number in the interval [0,0.1), s(x,y) =0, and w(x,y) =0. (b) At 300 time steps. The dashed parts of the
river pattern show lakes where water accumulation is not zero. (c) At 600 time steps. (d) At 1000 time steps.

sites separately because water does not flow out at those
points. Intuitively we can expect the following evolution
for those sites. A local minimum site and its basin sites
make a lake and water accumulates until it flows out
from the edge of the lake. Then the edge is eroded inten-
sively and finally the lake vanishes. In order to realize
this scenario we apply the following additional rules.

(a) We introduce a new quantity, w(x,p), the height
of water accumulation for the local minimum sites and
their basins, which is defined as

w(x,p)=min{h (x',y)} —h(x,p) +¢, )

where ¢ is a very small positive number; in our simulation
e=0.1.
(b) The height function 4 (x,y) is replaced by

hx,p)=h(x,p)+wix,py), 3)

and the above evolution procedures are applied for
h'(x,p).

(c) The function w(x,y) vanishes when min{h (x’,y")}
becomes smaller than h(x,y).

Note that all time evolution rules are deterministic, so
randomness comes only from the initial condition.

An example of time evolution starting from a nearly
flat surface with small uniform random fluctuation is
shown in Fig. 1. Here, we are observing a part (30x30)
of the system of size 100X 100 with periodic boundaries
for the left and right edges and with fixed boundaries for
the top and bottom edges. The bottom edge is much
lower than the top edge, so water flows out only from the
bottom edge. Accordingly river patterns and contours
grow from the bottom to the top. We find the growth of
river patterns from the early disconnected stage [Fig.
1(a)] to the fully developed space-filling stage [Fig.

1(d)].

In Fig. 2 we plot the number density of sites which be-
long to lakes together with the number of flows which
change direction in one time step. As seen from the
figure almost all sites are lakes in the beginning due to
the initial condition. The number of lake sites decreases
nearly constantly and no lake remains after about
t =2000. At this time all rivers have percolated to the
boundary and all of the rain water is drained out without
any accumulation. Water flow directions are unstable in
and around a lake especially when water begins to flow
out from the lake’s edge. As seen from Fig. 2 the number
of unstable flows also decreases monotonically and it be-
comes negligibly small a little before the time that all
lakes have vanished. We focus our attention on this sta-
tionary state and analyze its statistical properties.
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FIG. 2. Time evolution of number of lake sites (dashed line)
and number of unstable flows which change direction in one
step (bold line). The number is shown in percentiles.
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FIG. 3. The cumulative distribution of flow intensity,

P(=5), on a log-log scale. The line shows the power law
¢ o

In Fig. 3 the flow intensity distribution is plotted on a
log-log scale for a system of size 512% 512 with 5000 time
steps. Here P(=s) denotes the probability that the wa-
ter flow intensity of a randomly chosen site is larger than
5. As this is observed in the steady state the distribution
is equivalent to the drainage-basin size distribution. The
points are clearly on a straight line for the range from
s=10" to 103, which demonstrates a critical property of
the steady state. For s larger than 10* the distribution
decays exponentially due to the finite size of the system.
By comparing results of different system sizes we esti-
mate the distribution in an infinite system as

P(=s)excs ¥ B=0.40. (4)

This exponent is significantly larger than the value of
Scheidegger’s model [10], %, and is nearly equal to the
exponent for the branch size distribution for diffusion-
limited aggregation in two-dimensional space [10].

Although the river patterns are stationary in the steady
state, the contours keep changing because the surface is
always eroded by the water flow. Actually the river pat-
terns in Figs. 1(c) and 1(d) are nearly identical but the
corresponding contours look very different. In the steady
state the snapshot shape of the contours can be character-
ized by the fractal dimension. By using the box counting
method we confirm power-law scalings over nearly two
decays of scale length. The value of the contours’ fractal
dimension is estimated as D =1.600.15, which seems
to depend slightly on both height and time steps.

In order to see the dependence of the exponent and
fractal dimension on the erosion function we generalize
the erosion function as F(J)=C,J¢/(C§+J“). Our nu-
merical results for a =2 and 3 are as follows: The river
patterns are frozen after all lakes have vanished. In the
steady state the drainage-basin distribution follows the
same power law as Eq. (4) for any a within error bars.
The fractal scaling of the contours also holds in the gen-
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TABLE 1. The exponent of distribution of drainage basin
area, B, and the fractal dimension of contour lines, D, for
different a.

a | 2 3
p 0.41 0.41 0.41
D 1.60 1.45 1.35

eralized cases but with different values for the dimension
(see Table I). Intuitively speaking, we have thinner and
steeper valleys for larger a. It is interesting that the di-
mensions are close to those for Laplacian fractals with
growth probability proportional to the ath power of po-
tential gradients [11]1 (D =1.5 and 1.4 for a=2 and 3, re-
spectively).

Real river patterns are known to satisfy Horton’s laws
[12]. We confirm the validity of the laws for our steady-
state river patterns and estimate the values Rg=5.3 for
the bifurcation ratio and R; =2.7 for the stream length
ratio in the case of a=1 [13]. The ranges of values for
natural drainage basins are known to be [14] 2< Rg <6
and 1.5=< R, <3.5. Recently, Stark [15] proposed a
model of river patterns created by self-avoiding invasion
percolation and estimated the intrinsic fractal dimension
of the stream network as 1.68 by using La Barbera and
Rosso’s formula [14], D =logRp/logR;. By applying this
formula, we obtain the same value D =1.68 for our mod-
el.

More detailed analyses, including the dependence of
the results on the model parameters, the sensitivity to the
initial condition, a mean-field-type theory, and compar-
ison with real landscapes, are now in progress.
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