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Empirical Relations between Static and Dynamic Exponents for Ising Model Cluster Algorithms
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%e have measured the autocorrelations for the Swendsen-%ang and the Wold cluster update algo-
rithms for the Ising model in two, three, and four dimensions. The data for the Wolff algorithm suggest
that the autocorrelations are linearly related to the specific heat, in which case the dynamic critical ex-
ponent is z;,&

&. =a/v. For the Swendsen-Wang algorithm, scaling the autocorrelations by the average
maximum cluster size gives either a constant or a logarithm, which implies that zs~ l. =p/v for the Ising

model.

PACS numbers: 64.60.Ht, 05.50.+q, l l. l 5.Ha

The Monte Carlo cluster update algorithms of
Swendsen and Wang (SW) [I] and Wolff [2] can

dramatically reduce critical slowing down in computer
simulations of spin models, and thus greatly increase the

computational efficiency of the simulations (for reviews of
cluster algorithms, see Refs. [3,4]). There is little

theoretical understanding of the dynamics of these algo-
rithms. In particular, little is known as to why they seem

to eliminate critical slowing down completely in some

cases and not others. There is no known theory which

can predict the value of the dynamic critical exponent z

for any spin model, although a rigorous bound on z for
the SW algorithm for Potts models has been derived [5].
Another problem which is not well understood is why the

SW and WolA' algorithms give similar values of z for the
2D Potts model [6], but have very diA'erent behaviors for

other models, such as the Ising model in more than two

dimensions [7,8].
The measurement of dynamic critical exponents is no-

toriously diScult, and both very good statistics and very

large lattices are required in order to obtain accurate re-

sults. This is certainly the case for the Ising model,

where a number of different measurements have given

conflicting results. For the two-dimensional Ising model,

initial results suggested z =
& for both the SW and

WolA' algorithms [1,8]. Further work [7] gave z = 4,
and it was later shown that the data were consistent with

a logarithmic divergence, suggesting that z =0 [9]. Re-

cent results show that it is very diScult to distinguish be-

tween a logarithm and a small power [6].
Measurements on the three-dimensional model have

proven to be just as diflicult, with values of z for the SW
algorithm ranging from 0.339(4) to 0.75(1) [1,7, 10]. For
the Wolff' algorithm, Tamayo, Brower, and Klein [8] ob-

tained 0.44(10), while Wolff found a value of 0.28(2) for

the energy autocorrelations [7]. We have examined
WolA's data and found that they are also fitted well by a

logarithm, so that z =0 is also a possibility.
In four dimensions only one result is known, which is

z = —0.05(15) for the WolA algorithm [8]. Simulations
have also been done on the mean-field Ising model, which

is expected to give the same exponents as the Ising model

in four or more dimensions [11]. The mean-field data are
consistent with z being 0 for the WolA' algorithm [8] and

I for SW [12], with the latter result being supported by

theoretical arguments.
Because of the discrepancies between the various mea-

surements of the dynamic critical exponents, we have

done numerical simulations of the Ising model in two,

three, and four dimensions using the SW and Wolft algo-
rithms, with the aim of obtaining good statistics on fairly

large lattices, in order to get reliable values for the dy-

namic exponents. We measured the time correlation
function p(t) for the energy, and extracted the integrated
autocorrelation time [3] r = -' +gP=~ p(t). The dynamic

critical exponent z is given by r-l=, where r for the

diAerent lattice sizes is measured at the infinite-volume

critical point. We have used the Potts formulation of the

Ising model, for which the critical point in two dimen-

sions is known to be P, =In(i+&2) =0.8813736 [13].
For the 3D model we used the value 0.443308 [14], while

in the 4D case we used 0.29962 [15]. A detailed account
of the methods we used to do the measurements, fits, and

error estimates is given in Ref. [6].
Autocorrelations are traditionally measured between

each update of the entire lattice, so for the single-cluster
Wolff update, where only a fraction of the lattice sites are

updated at each iteration, the measured autocorrelation
time r' needs to be scaled by the ratio of the average
Wolff cluster size (lcwl) and the number of lattice sites

I '. The scaled autocorrelation time

is what we present for the WolA' autocorrelations. Since
this scaling ratio is an estimator for the susceptibility [2],
the dynamic critical exponent z' for the unscaled auto-

correlations is given by z'=z+(d —y/v), where v is the

critical exponent for the correlation length, and y is the

critical exponent for the susceptibility, which diverges as

g T/

For the SW algorithm on the larger lattice sizes in two

and three dimensions, we used a parallel cluster labeling
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the dynamic exponents of the S%' algorithm. To investi-
gate this further, we have scaled the SW autocorrelations
by n&, in a manner similar to the scaling of the Wolff au-
tocorrelations in Eq. (I). If this gives a constant or a log-
arithm, then T; „& I. diverges like the magnetization, and so

The SW autocorrelations scaled by nr (and by an addi-
tional arbitrary constant, so that these points are not en-
tangled with others in the plots) are also shown in I"'ig. I.
Vor d=4 the results are very close to a constant, while
f'or d =3 they seem to approach a constant as L increases.
In two dimensions the scaled autocorrelations are not
constant, but they fit very much better with a logarithm
than do the unscaled data, as can be seen in Fig. 1(a),
and fit very poorly with a power law. The data therefore
support the assertion that
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I. I Cr. 2. 1 he difrerence r;rtI (
—(a+ b x C (I ) between the

'A/'olfe autocorrel;[tions and a simple linear f unction of the
specific heat for the Ising model in {a) 2D, (b) 3D, and {c)4D.
The values of a and b are chosen so as to minimize the g-, ex-
cept in three dimensions, where we have taken a =0. The errors
shown are almost all less than l "/I of' r;.&, ~ .

tiple of the specific heat, with b =O. l48. In four dimen-
sions we hnd a =O. l67 and b =0.050.

The surprising simplicity of the result (3) led us to look
for a similar relation for the SW algorithm. The power
uf cluster update algorithms comes from the fact that
they Hip large clusters of spins at a time. The relative
.tverage size of the largest SW cluster, m =(~csw" ~1/L', is

an estimator of the magnetization [Ill], and the exponent
P/v characterizing the divergence of the magnetization
has values which are similar to our measured values for

ntr „( g: =a+bxlogL, t:„, p, =P/v.

Our measurements of z;„& q. in 3D and: „t q in 4D give
results which are very different from the accepted values
of' a/& (=0.10-0.20) [19,20] and P/v (= I ) [15,21]„
since corrections to scaling are known to be important for
these quantities. If we do a simple power-law fit to the
specific heat in 3D and the magnetization in 4D, we get
results which are also very different from the actual ex-
ponents, but which are very close to the measured values
of the corresponding dynamic exponents, as expected
f'rom relations (3) and (4). Thus although we may not be
able to measure the asymptotic behavior of the autocorre-
lation times, finding simple relations between the auto-
correlations and static quantities whose asymptotic be-
havior is known enables us to infer the true values of the
dynamic critical exponents.

This is especially useful for the 2D model, for which
the autocorrelations grow so slowly that any corrections
to scaling could have a big effect. It is therefore very
diNcult to say with any confidence that "=0, even with

data on very large lattices. The apparent relation (3)
seems to be the most compelling evidence so far that

=;„t q. is in f'act zero for the 2D Ising model, awhile the re-
lation !4) would imply that =;„, &. is actually -„, which is

not apparent from the usual fits with either a logarithm
or a power law.

We have measured the autocorrelations and dynamic
critical exponents of the SW and Wolff cluster algorithms
for the Ising model in two, three, and four dimensions.
We have found what appear to be surprisingly simple
empirical relations between the autocorrelation times of
these algorithms and simple static quantities (the magne-
tization and specific heat). These relations could perhaps
stem from the fact that the dynamics of' cluster algo-
rithms are closely linked to the physical properties of the

system, since the Swendsen-Wang clusters are just the
Coniglio-Klein-Fisher droplets [22], or "physical clus-
ters" [Ig], from which the critical behavior ol the system

may be described.
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The relations (3) and (4) are certainly not general re-

sults, since for the 2D q =3 Potts model we find that
z ) a/v and z &P/v [5,6]. Also, it is quite surpris-
ing that these empirical relations imply that z is not

equal to z for the 2D Ising model, whereas the two ap-
pear to be equal for the 2D q=3 Potts model. It is of
course possible that these relations are not exact, but
merely good approximations. We are currently collecting
more data in order to check whether these results hold up
with larger lattices and better statistics, and we will

present more detailed results in a future publication [23].
The simulations were done using an nCUBE/10, a

Symult S2010, an Encore Multimax, a BBN GP1000
ButterAy, and a network of SPARC stations, DEC sta-
tions, and IBM RS-6000 work stations. We would like to
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puter Facility, Michigan State University, and the Sandia
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well as the Center for Research in Parallel Computing
for allowing us access to most of these computers.
P.D.C. was sponsored in part by Department of Energy
Grants No. DE-FG03-85ER25009 and No. DE-AC03-
81ER40050, and by a grant from the IBM corporation.
C.F.B. is supported by Air Force OfFice of Scientific
Research Grant No. AFOSR-89-0422 and by the
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