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Finite-Difference Method for the Calculation of Low-Energy-Electron Diffraction
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A new scheme of calculation avoiding the muflin-tin approximation is presented for low-energy-
electron diffraction. The finite-difference method is then used to solve the Schrodinger equation. A sim-
ple superposition potential and a nonuniform three-dimensional grid of points yields satisfactory
experiment-theory agreement for the Cr(100)-(1 x [)N surface, with geometrical parameter values close
to the ones found in a standard study. An optimization of the charge exchange gives a 1.3 electron

transfer from chromium to nitrogen.

PACS numbers: 61.14.Dc¢, 02.60.+y, 34.70.+¢

Up to now, all methods for low-energy-electron—
diffraction (LEED) intensity calculations have been
based on the muffin-tin approximation [1]. The largest
possible nonoverlapping spheres are drawn about each
nucleus, the potential inside is spherically symmetric, and
the interstitial potential is constant. Then, the calcula-
tion is divided into three steps. First, the scattering by a
single atom is described by phase shifts and partial spher-
ical waves. Second, the scattering by an atomic plane
parallel to the surface is calculated taking into account
the intralayer multiple scattering. Third, the scattering
by the whole crystal is obtained by computing the inter-
layer multiple scattering.

A large number of surface structures have been deter-
mined by this method, including adsorbate systems as
well as ordered or substitutional alloys [2-4]. Neverthe-
less, the muffin-tin approximation is not appropriate at
very low energy, in the presence of strong dipoles at the
surface, or for semiconductors. In these cases the agree-
ment between theory and experiment can probably be im-
proved by using a more general computation scheme.

Some works, which could be applied to LEED, have al-
ready tried to go beyond the muffin-tin approximation for
energy band problems. In particular, the discrete varia-
tional method (DVM) [5] uses a discretization of the po-
tential to calculate matrix elements but keeps the usual
expansion in plane waves in its Koringa-Kohn-Rostoker
version [6]. More recently, Gonis, Zhang, and Nicholson
{71 showed that the equations of multiple-scattering
theory remain valid in the case of arbitrary-shaped poten-
tial cells.

Numerical methods, such as the finite-difference
method (FDM), are extensively used in mechanics and
hydraulics but less often in solid-state physics. The first
presentation in this area was made in 1934 by Kimball
and Shortley [8]. It was used later, for example, by Pus-
ka and Nieminen [9]. Both studies dealt with binding
states. The FDM is based on the elaboration of a three-
dimensional grid in the volume of interest, and a discrete
form of the Schrodinger equation is given on the node
points of this 3D grid. The unknowns are the values of
the wave function at the grid points. This does not re-
quire any geometrical modeling of the potential such as

the muffin-tin approximation, and therefore no particular
basis of expansion (spherical or plane waves) is necessary.
The advantages of the FDM are the mathematical simpli-
city and the flexibility coming from its direct derivation
from the Schrodinger equation, which allows for an easy
extension to more complicated situations such as nonlocal
phenomena. A technical limitation of the FDM is that
the grid has to be very dense in the vicinity of the atomic
nuclei. However, the technique is now of practical use.
thanks to the rapid improvements in computer capabili-
ties. The purpose of the present paper is to develop the
FDM to LEED applications.

The first thing is to build a potentia! describing the
electron-crystal interaction as well as possible. As a first
try, a simple superposition of spherical atomic electron
densities is performed. Using Slater orbitals, it is always
possible to attribute an electric charge to the atoms, and
so, define a charge transfer that is just the number of
charges passing from the valence orbitals of one atom to
those of another atom. This charge transfer is an input
parameter to be fitted in this study. This must be done
keeping the surface cluster globally neutral. The poten-
tial is then divided into two contributions: the classical
Hartree potential and the exchange-correlation potential
as suggested by Hedin and Lundgqvist [10]. The excited-
state potential is calculated using the table given in Ref.
[10]. The surface barrier is automatically taken into ac-
count including the three-dimensional corrugation. One
just has to make the calculation sufficiently far outside
the crystal.

This simple superposition is illustrated by looking at
the dependence of the total potential on the energy at the
mean distance between atoms in clusters of Cr,N. A
curve in excellent agreement with the one used for the
real part of the optical potential in standard LEED is
found. Note that the difficult and artificial choice of the
muffin-tin radius is avoided. This eliminates nonphysical
parameters such as potential shifts or a step between the
“inside” and the ‘“‘outside™ of the muffin tin. The poten-
tial varies smoothly and without spherical symmetry in
this area.

The imaginary part of the potential used to simulate
the damping, mainly due to the plasmons, is assumed to
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be uniform in the solid and smoothly energy dependent as
is usual in standard LEED computations. Note, however,
that this assumption is not necessary, any periodic 3D
dependence of the imaginary part of the potential being
usable. At the surface, the imaginary barrier shape is
chosen as proposed by Rundgren and Malmstrém [11].

The Schrodinger equation can then be solved in the
whole zone of interest, namely, from the crystal-vacuum
interface to deep enough in the bulk, where the electron
wave field is widely damped out and a no-reflection
boundary condition is used. Parallel to the surface,
periodic boundary conditions are used. One takes advan-
tage of all possible symmetries to divide as much as possi-
ble the number of grid points in the problem (see Fig. 1).

Considering the wave function as a second-order poly-
nomial, the Laplacian in the Schrodinger equation Ay
+[E—V(x)1yo=0 can be written, for a cubic and uni-
form grid lattice with an interpoint distance A, in the
form

Ay = [—6W0+wa]/h2’
Jj.&

where o is the wave function value on the central point

1
]

101 3

[ | N
. e
L '
19 o!
v .

L:o: o: L

. R
G ie! .
— '
1

]

1

:

AW

'

1

'

1

1

1

' 1

E,:( e e @ e o :.:

l.: [ [ [ [ ° ° :.:

o ::

:o: e o o o o o :.:

:_o-: e o o o e o ::
NCHC P S I PN

FIG. 1. General view of the meshing. G is the limit of the
unit cell. Two atoms are represented with their concentric
crowns and the corresponding division by two of the interpoint
distance. In O, the wave function is close to zero. The neigh-
boring points in L are deduced from symmetries or translation.
In S, the wave function is calculated through the propagation of
simple plane waves from the plane F where the Fourier trans-
form is done. B is a point where formula (1) can be directly ap-
plied; at A, a neighboring point is missing and adjacent points
must be considered in the Laplacian.

where the potential is ¥'(x). The y} are the wave func-
tion values on the six nearest-neighbor points along the
directions ¢j with =+ or — and j=x, y, and z. For a
quadratic uniform lattice with different interpoint dis-
tances hj along the six directions, one gets

Ay= [—;z/h;fh;ﬁ] wg+j2[2wf/hf(h;+h;")l ()

Close to an ion core, the kinetic energy of the electron is
very high, whereas in the region between two ion cores, it
is much lower. Consequently, it is necessary to use a
nonuniform lattice of grid points in order to solve the
Schrodinger equation. In this case, some nearest neigh-
bors cannot be part of the grid points and a more complex
Laplacian is deduced versus other wave function values
on other points on the grid.

A set of n linear equations corresponding to the n
points of the grid, with n unknowns, is obtained, the value
of the wave function on a point depending on the values
of the wave function on the neighboring points. At the
vacuum-crystal interface, a Fourier transform is per-
formed to get the values of the diffracted beam ampli-
tudes, and so, it is possible to calculate by simple propa-
gation the value of the wave function on the grid points
outside the surface plane (see Fig. 1).

From this formulation it is easy to see that a nonlocal
potential such as Vy(x) =XU(x,x)y(x')d>x' can be
directly introduced in the discretized formula. For in-
stance, it is in this way that the effect of temperature will
be treated in the next step of the development of the
method. Nevertheless, at this stage, a first crude approxi-
mation is to neglect the effect of multiple scattering on
phonon damping. One then has just to multiply the
diffracted intensity by a Debye-Waller factor. Anyway,
temperature effects can cause different attenuations on
the different peaks in a spectra, but never shift them in
energy.

To determine the interpoint distance of the grid, the
following convergence criterion is chosen:

hHE—V)=68, )

where B is a test parameter. In the crystal, the maximum
interpoint distance value A, is found between the atoms
where £ — V is minimum. For simplicity, one can take an
hmax value corresponding to the highest energy of in-
cidence in the LEED study. Near the nucleus of an atom
the potential is given by —2Z/r and relation (2) cannot
be used because h would have to converge to zero. For-
tunately the oscillations of the wave function do not have
infinite frequency. A first-order approximation to the
wave function near the nucleus is given by the Hartree
formula:

vo=X wi/(6—12Zh).

To get the minimal interpoint distance around the nu-
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cleus the following convergence criterion is used:
hmin= a/2Z ,

where a is another test parameter. Starting from h
=hnmax the interpoint distance is decreased by successive
division by 2 when approaching a nucleus until the A,
value is reached. The grid between atoms is thus com-
posed of successive concentric crowns. Between two of
them, the point density is multiplied by 8 (Fig. 1).

Calculations are performed on Cr(100)-(I1x1)N at
normal incidence and compared with both experimental
spectra and with previous standard LEED calculations.
Chromium is a transition metal and such a material
might not be the best choice to get an improvement with
respect to conventional calculations. Indeed, the muffin-
tin approximation is rather good in this case. Neverthe-
less, the goal is to prove the validity of the present
method, and with the geometry of this surface already
resolved by standard LEED [12], parameters can be
reoptimized just around the values already found.

Trials were made to determine appropriate values of
the test parameters a and 8. With a=g=0.3, a reason-
able agreement between experiment and theory is ob-
tained. With a=f=0.15 convergence is achieved. In
our case this means a maximum interpoint distance h
around 0.11 A and five grid divisions to reach h iy
=0.036 A for nitrogen and seven to reach A i, =0.009 A
for chromium because of its higher atomic number. The
p4m unit cell is seven layers deep and contains around
17000 points.

The structure has been optimized by the mean of
metric distances [13]. The nitrogen atom was kept in the
fourfold hollow sites. The rippling between nitrogen and
chromium atoms and the two first chromium interlayer
distances d, and d»; are optimized in the present work:
(i) d1> is found equal to 1.84 A corresponding to 28% ex-
pansion, to be compared with 1.79 A and 25%, respective-
ly, in the previous study; (ii) the distance between the ni-
trogen and the second-layer chromium remains the same
(2.01 A), which implies a 0.16-A rippling; (ii) d1; is
found to be equal to 1.25 A, slightly lower than the 1.40-
A value previously found. One can note that the dis-
crepancy between the nitrogen focal environment models
due to standard and to FDM LEED is very small.

An optimization of the charge exchange between the
nitrogen and the surrounding chromiums of the first
atomic plane has been performed. Calculations with be-
tween 0 and 2 electron transfer from chromiums to nitro-
gen were tried. The best agreement is found for a 1.3
+ 0.5 electron transfer. This is consistent with values
given in bulk nitrides by band-structure calculations [14]
or by x-ray diffraction [15].

The result is given in Fig. 2. The agreement obtained
between FDM calculated and experimental /-V curves is
quite good in spite of not taking the temperature into ac-
count.
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FIG. 2. The best agreement between the experimental (solid
curve) and calculated (dotted curve) spectra. The incidence is
normal.

Concerning computing requirements, the new method
is more expensive than the traditional approach: (1) One
needs between 5 and 10 times more memory, and (2) the
computing time for one structural model is of the same
order, but the present program cannot be easily optimized
to loop over interlayer distances.

In conclusion, the finite-difference method works for
LEED calculations. Being more expensive than the tradi-
tional approach, the interest of the method is not for
making the standard analysis but the following: first, the
possibility of studying situations difficult to reach with
classical methods, such as evaluation of specific parame-
ters or analysis of non-muffin-tin surfaces and, second, its
possible extensions. The next step must be to consider
the effect of temperature and to extend the formulation to
nonspherical atomic orbitals permitting, thus, a real
description of the surface atomic bondings. The method
can be extended to band-structure calculations or elec-
tronic structure calculations in a cluster with the same
kind of grid. A variational scheme would then have to be
added for the energy calculation.

I am especially indebted to J. Rundgren for very help-
ful discussions during the different stages of this work.
D. Aberdam is thanked for careful reading of the
manuscript. Computing time was supplied by the Centre
Inter Regional de Calcul Electronique. The Laboratoire
de Spectrométrie Physique is “Unit€ associée au Centre
National de la Recherche Scientifique.”
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