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Measuring the Probability Distribution of the Relative Velocities in Grid-Generated Turbulence
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Homodyne photon correlation spectroscopy (HCS) and laser Doppler velocimetry (LDV) were used to
study the probability density function of velocity differences 6v(l) between points in the Auid separated
by a distance I. The two measuring schemes yield diA'erent results for the probability density,
P(k (l))db't (I). HCS probes the spatial fluctuations directly, whereas LDV records temporal tluctua-
tions in velocity and relates them to the spatial fluctuations through the Taylor hypothesis. The mea-
surements therefore imply the failure of this hypothesis in the Reynolds number range where we have
applied it.

PACS numbers: 47.25.Ae, 47.25.Cg

In turbulent flow the quantity of interest is not so much
the velocity itself, v(r, t), as the instantaneous difference
in velocity at two points separated by a distance l. This
quantity Itv(l)= v(r+—l, t) —v(r, t) is characterized by a
probability density function, P(Bv(l))d8v(l), where v is
the measured component of v and I is the magnitude of I.
Herein we report measurements of P(6v(l)) in turbulent
flow generated by a grid in a water tunnel. The experi-
ments explore a range of I values and span a range of
Reynolds numbers under conditions that possibly lie be-
tween chaotic behavior and fully developed turbulence.

Our measurements of P(ht (I)) will be compared with
a measured probability density function P'(h (vl)) de-
duced from a record of the velocity as a function of time,
recorded at a single point in the turbulent Auid. Both
types of measurement were made at almost exactly the
same position in the turbulent stream. To deduce spatial
information from the time record of the velocity, it is

necessary to invoke the so-called Taylor hypothesis
(frozen turbulence assumption) [1], which simply means
that v(t) is replaced by t (x/U), where U is the mean
flow velocity and x is a coordinate in the flow direction.
Virtually all measurements of the probability density
function for velocity differences on scales I have been
made in this way [2].

In the work reported here, P and P' are found to be
very different, implying a failure of the Taylor hy-
pothesis. As for P, it is well represented by the product
of Gaussian and Lorentzian terms. The Lorentzian fac-
tor is found to have a much smaller width, ut (I), than
the width uc (I), of the Gaussian factor. The new mea-
surements reported here substantiate those made in a
much smaller water tunnel [3-5]. The function P' is

much more Gaussian in form than P, but it also gives a
heavier weighting to large velocity fluctuations than does
a purely Gaussian function. If one parametrizes P' by
the product of Gaussian and Lorentzian factors, the
widths of these two factors are comparable in magnitude.
For our measurement, the frozen turbulence assumption

fails, i.e., P and P' are conveying different information
[6].

The schemes for measuring P' and P are laser Doppler
velocimetry (LDV) and homodyne photon correlation
spectroscopy (HCS), respectively. The former technique
is a standard one [7], whereas the HCS method has been
used only recently [3,8-1I]. Both of these methods re-
quire the seeding of the Auid with small particles which
follow the local flow and scatter light. The HCS method
is sensitive to velocity differences rather than to the veloc-
ity itself, because it registers the beating of Doppler shifts
coming from pairs of particles moving relative to each
other [3]. As will be discussed below, the optical scheme
used here records velocity differences for all values of (
from the smallest eddy size present out to a size L, which
is the width of a slit through which the light passes before
it reaches the photodetector. Because one measures a
scattered intensity rather than a scattered electric field,
the HCS method yields information about the symmetric
part of the probability density only. It is this part of the
full probability density function that we label as
P(8v(l)). Past measurements of P' in highly turbulent
Aows show that this function is not always symmetric
[12,13]. ln the present LDV measurements P'(6 (I)t) is

also asymmetric, though the asymmetry is small.
Our HCS measurements of P(R (I)) show it to be well

approximated by the product of Lorentzian and Gaussian
functions only if the Reynolds number of the flow, Re,
exceeds some critical value, Re, =300. Here we define
Re as Re=aU/v, where a is the mesh size of the grid
(a =8.5 mm) and v is the kinematic viscosity of water
(0.01 cm%ec). The widths of the Lorentzian and Gauss-
ian factors are explicitly defined by the equation

exp[ —ut (I) '-/2uc;(I) '-]
P=

tr erfc[ut (I)/J2u&; (I)]

ut (I)
xexp[ —6v(l)'/2u&;(I) ]

Bt I -+ut I
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The ratio of these widths, M=u~(l)/ut (I), is found to be
approximately 3. This ratio is only weakly dependent on
l and Re in the range of parameters probed in this work,
namely, 0.3 & L &2.5 mrn, 300& Re & 1800.

As discussed below, the quantity actually measured
with the HCS scheme is the intensity correlation function

g(t) of light scattered by the seed particles. This func-
tion is observed to have a self-similar form, which it
would not have unless both widths, ut (I) and uG(l), are
proportional to l", with a common value of the exponent
h. In this experiment, as in the earlier work, using a
smaller water tunnel, h is observed to increase with in-

creasing Re from It =0 to —', , the Kolmogorov value [14].
The experiments were carried out in the water tunnel

that was 10 crn&10 cm in cross section and 1.1 m in

length. The measurements were made at an axial point
25 cm downstream from the grid. The spanwise profile of
the flow was flat, making the time-averaged velocity gra-
dient at the measuring point for P and P' negligibly small

[I I].
The water was seeded with polystyrene particles (diam-

eter 0.106 pm), which were small enough to follow the
local flow. The light source was the mildly focused beam
from an argon-ion laser operating at the wavelength
A, =488 nm. The incident beam traveled perpendicular to
the flow direction. The scattered light was detected in a
direction that was also perpendicular to the flow. The in-

cident beam traced out a clearly visible thin line in the

flowing water, the diameter of this beam being less than

0. 1 mrn. The scattered light, at a scattering angle 0
=90', was imaged at 1:1 magnification on a slit of ad-

justable width L. This width is a crucial parameter in the
experiment because it determines the maximum measur-
able eddy size, I =L, to which g(t) is sensitive. Therefore
I is the eddy size in the direction perpendicular to the
mean flow. More than 1.5 m behind the slit was a pho-
tomultiplier which recorded the scattered intensity 1(t).
The output of the photomultiplier is a train of identically
shaped pulses which are sent to the correlator, whose out-

put is the intensity correlation function g(t) =(l(t'
+ t )l(t'))/(l(t')) -'.

Under approximations which are well satisfied in these
experiments, one can show [31 that g(t) is given by

I I p oo

g«) = I +A «)„,b(I)dl „P(b'v(l) )cos[kbv(l)t]dbv 0) = I+G(t), (2)

where k =(4znlk)sin(8/2), and bv(l) is the component
of b'v(l) along the direction of k. In this experiment k
was perpendicular to the flow direction. The refractive
index of the scattering medium (water) is n =1.33. Quite
generally, G(t) is a decaying function, with characteristic
decay time of the order of I/ku(L), where u(L) is the
characteristic velocity difference over a slit width L. The
function b(l) =(2/L)(l —I/L) is the probability that a

pair of particles, separated by I, are to be found in the slit

[3,11]. This form of b(l) is correct only if L is much

greater than the beam diameter [3,8]. The factor A(t)
represents the Brownian diffusion of the seed particles
and takes account of the fact that even in the absence of
turbulent flow, G(l) will decay slowly and is of the form
A(t)-exp( —2Dk 't), where D is-the difl'usion constant.
This parameter is determined from the diameter of the
seed particle and the viscosity of water [15]. All of the
experimental data have been corrected for this Brownian
motion factor [I I l.

According to Eq. (2), if P(bv(l)) has the simple scal-
ing form P(b'v(l)) =g(bv(l)/u(l)), and if u(l) —I",
then G(t) has the scaling form G(k, t, L) =G(x), where
x =ku(L)t. Therefore a plot of logG(t) vs logt, for fixed
Re but various values of L, should produce curves all of
which should be superimposable when translated along
the time axis. This is indeed what was observed in the
earlier experiments [3] and in the present ones. Figure I

shows the normalized G(t) measured at the three slit
widths L =0.5, 1.1, and 2 mm, the Reynolds number be-
ing Re =1490. These measurements yield h =0.31.

Figure 2 is a semilog plot of G(t) at Re =1490, L =1.3
mm. Also shown is the best fit by Eq. (2), assuming that

I
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FIG. l. Superimposed log-log plot of G(I) for the three indi-

cated slit widths 1 and at the Reynolds number indicated.

P is purely Gaussian !P=[I/42truo(/)]exp[ —bv(l) /
2u~ (I ) '-)] (dashed line), and purely Lorentzian
IP=ut (I)/tr[ut (I) +bv(l) ]] (solid line). These two
lines correspond to ut (L) =ug(L) =0.216 cm/sec. Vari-
ation of these parameters could not produce a good fit to
these data with either the Gaussian or Lorentzian proba-
bility density function, though the Lorentzian fit is slight-

ly superior. We have shown a Gaussian form for
P(bv (I)) because it is sometimes observed for large
values of I [16]. A probability density of dominantly
Lorentzian form gave a satisfactory fit to the measure-
ments in Ref. [4].

To proceed further we take note of the fact that the
cosine factor in Eq. (2) implies that G(t) must approach
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F1G. 2. Semilog plot of G(&) at Re =1490, L = l.3 mm. The

solid line is a Lorentzian ht to the data, and the dashed line is a
Gaussian tit. The characteristic widths u& (L) and u&;(L) of
both factors are 0.216 cm/sec. The inset shows the same data
fitted using Eqs. (I) and (2).

FIG. 3. Semilog plot of the symmetric part of the probability
density function as measured by laser Doppler velocimetry, the
abscissa being hr (/)/[lb& (/)'-)] ' -. The solid line is a fit to these
data using Eq. (1) and the dashed line is the function P extract-
ed from the HCS measurements, using Eqs. (1) and (2). The
measurements ~ere at Re =1490 and I =1.3 mm.

the origin with zero slope [G(t) —1
—const&&&2], even

though experimental limitations on the electronics bar an
unambiguous observation of this behavior. We therefore
attempted the fit to P(8v(I)) in Eq. (2) with the product
of a Lorentzian and a Gaussian function, the widths of
these factors being adjustable parameters. As seen in the
inset in Fig. 2 (solid line), it was possible to obtain a very
good fit to the data with this form of P. A similarly good
lit with this form of G(t) was obtained at all values of L
and Re. For each of the parameter pairs, u&;(/) and
ui (/), we have evaluated M(/, Re) and find it to be ap-
proximately 3. There is no discernible trend with chang-
ing Re. Similar values of M were obtained in Ref. [4].
Onuki [17] has suggested that two widths, u&;(/) and
ul (I), characterize velocity fluctuations inside and out-
side of the active regions. Abundant experiments suggest
that the active regions of the turbulent dissipation lie on a
fractal or multifractal [18].

Next we turn to the LDV measurements ol' P'(6& (I)).
With the LDV technique, the seed particles traverse opti-
cal interference fringes, modulating the intensity of the
scattered light received by the photomultiplier. A com-
merically available counter-signal conditioner records the
frequency of these pulses and hence determines v(r) at
the observation point. The Taylor hypothesis is then in-
voked to convert the v(t), a temporally fluctuating signal,
into & (x), where x is a coordinate in the Aow direction
[7]. The Taylor hypothesis is generally assumed to be
valid when the ratio f of the rms Auctuations in the veloc-
ity about its mean value, U, is a small fraction of U itself.
This condition was well satisfied in the present experi-
ments where f was always less than 0.04. By splitting up
the time record & (t ) into segments of equal length 6t, and
replacing 6t by I/O, we create an ensemble of velocity

diA'erences, 8v(/), from which P'(bv(I))d8v(6/) can be
constructed with a histogram.

Figure 3 is a semilog plot of an LDY measurement of
the symmetric part of P' vs a=&tv(/)/[(6v(/) )]'/ at
Re = 1490 and I =1.3 mm for Bv (I ) )0. The antisym-
metric part of P' was observed to be very small. Over the
limited range of a spanned by our measurements, these
data agree very well with the measurements of Anselmet
er al. [12] on the duct Aow at a very high Reynolds num-
ber (based on the Taylor microscale) of 515. The solid
line in the figure is a best fit to these data, assuming that
P' is of the Lorentzian-Gaussian form of Eq. (I). The
parameters producing this fit are ul (I) =0.364 cm/sec
and u&;(/) =0.385 cm/sec, giving M =1.06. This ratio is

much smaller than M obtained from the HCS experi-
ments. Those LDV measurements, which spanned the
same range of Re and L as the HCS experiments, could
be fitted with a density function containing the product of
Lorentzian and Gaussian factors. Ho~ever, the exponent
h(Re) could not be determined without making question-
able assumptions [11].

The dashed line in Fig. 3 is the function P extracted
from the HCS measurements made using the same values
of Re and I as the LDV data in the figure. The parame-
ters associated with this HCS measurement are u& (L)
=0.256 cm/sec and u&;(L) =0.695 cm/sec. Note that the
Gaussian factor is weighted much more heavily than for
the HCS measurements, i.e., M is smaller. The diAerent
shapes of the two curves P and P' vs a in Fig. 3 suggest a
failure of the f'rozen turbulence assumption at moderate
Re and small scales. This failure would be assured if the
turbulence were established to be isotropic. It was not
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possible to measure P with precision when 6'v was parallel
to the flow, but it was found that, for diAerent directions
of Bv, M was still larger than its value obtained from the
LDV measurement of P'. The value of h(Re) in this ex-
periment was the same as that measured in the experi-
ments discussed above, where 6'v was perpendicular to the
flow.

The failure of the frozen turbulence assumption indi-

cates that the small eddies, which are being probed here,
do not maintain their geometrical shape as they are con-
vected past the observation point at the mean velocity U.

A possible cause is the coupling between velocity fluctua-
tions at large scales and spatial gradients of velocity at
small scales, a point that has received much theoretical
attention [19-21].

Recent measurements of the probability density func-

tion at high Reynolds numbers, using the Taylor hy-

pothesis, show an exponential behavior for large a, and a
Gaussian-like form for small a [12,13]. Even though we

could fit our data with a Gaussian-Lorentzian form, our
HCS measurements of P look similar to theirs (see Fig.
3).

In summary, we have carried out measurements which

expose the Taylor hypothesis (frozen turbulence assump-
tion) to an experimental test and have measured the
functional form of the probability density P(b'v(l)) over

a range of eddy sizes I in the Reynolds number range 300
to 1800. The function P is well represented by the prod-
uct of Gaussian and Lorentzian factors but not by either
factor alone or by an exponential function. These obser-
vations indicate the importance of probing turbulence in

both the time and space domains.
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