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Propagation Rate of Growing Interfaces in Stirred Fluids
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The overall propagation rate of growing interfaces subject to weak random s';irring is investigated,
based on a variant of the Kaidar-Parisi-Zhang equation. Scaling analysis, supported by computations,
indicates that random stirring increases the overall propagation rate in proportion to the —', power of the
ratio of stirring rate to growth rate. The generally assumed quadratic dependence on this ratio is valid

only for special cases such as periodic How. On this basis, a modified turbulent-Game speed formula is

proposed. Implications concerning interpretation of measurements are noted.

PACS numbers: 47.70.Fw, 05.40.+j, 05.70.Ln, 68.35.Fx

The structure of stochastically growing interfaces, as
characterized by the Kardar-Parisi-Zhang (KPZ) equa-
tion and related formulations [1,2], has been found to ex-
hibit a rich scaling phenomenology. Analyses of this phe-
nomenology have focused on the time regime correspond-
ing to transient development. A question that has re-
ceived less attention is the parametric dependence of the
overall propagation rate during the statistically steady
propagation that follows transient relaxation.

The latter question has, however, been the subject of
long-standing scrutiny in the engineering literature with

reference to the overall burning rate of flames propa-
gating through turbulent gases. In particular, a dynami-
cal equation has been formulated [3] that is closely relat-
ed to the KPZ equation. Adopting KPZ notation, that
"Aame propagation" equation may be written as

h +v Vh =)t,[1+(Vh ) ] ' + u .

Here, h(x, t) is the interface height as a function of loca-
tion x transverse to the direction of overall propagation, V

is the gradient with respect to x, and u and v are the lon-

gitudinal and transverse components, respectively, of the
flow field. Ignoring overhangs, h is assumed single
valued. As in the original KPZ formulation, u drives

fluctuations of h, v redistributes the fluctuations trans-

versely, and the interface growth process, governed by the
constant parameter A, (the "laminar flame speed"), serves

to damp Auctuations.
It is assumed that the interface growth process is

dynamically passive, so '.hat the Aow field can be regard-
ed as prescribed. This assumption ignores thermal expan-
sion and related aspects of rea1 lames that cause u and v

to depend on h.
Expanding the square root based on a small-gradient

approximation, consistent with the assumed single va1-

uedness of h, the leading term is removed by the
reparametrization h —h+ Xt. The next term corresponds
to the nonlinear term of the KPZ equation. Full
correspondence to KPZ is obtained if u is regarded as a
noise term and if the transverse redistribution term is re-

placed [4] by a diflusion term of the form —vV' h, ap--

propriate on length and time scales large compared to
those governing Auctuations of v. The latter replacement
is not explicitly implemented here, so this remark serves
merely to refine the analogy between KPZ and Eq. (I).

With the stated reparametrization, (8h/8t) is the in-

crease in the propagation rate due to stirring. The depen-
dence of this quantity on properties of the Aow field
(henceforth assumed isotropic) is investigated by scaling
analysis of the approximate equation

h +v Vh =
~ k(Vh ) +u,

t

valid in the limit of weak stirring. In this limit, geometri-
cal considerations [3,5] give

where the right-hand side is X times the surface area of
the wrinkled interface per unit projected transverse area.

Equation (2) has previously [3,5] been analyzed by in-

tegrating the lowest approximation to obtain ho =I u dt
and substituting this into the right-hand side of Eq. (3).
The postulate Vho-u'/k, where u' is the root-mean-
square velocity fluctuation of the flow field, yields
(l)h/t)t)-k(u'/k)-'. This result has been the genesis of
various analyses of turbulent combustion phenomena [6].
In particular, it is the conceptual basis, and a limiting
case, of a renormalization group analysis that yielded the
first systematic theory of flame propagation through fully

developed turbulence [7].
Here, (t)h/tlt) is estimated without postulating the scal-

ing of Vho by applying "nonequilibrium Flory theory" [2]
to Eq. (2). Taking the gradient of Eq. (2) and rearrang-
ing terms, it can be rewritten as

8q = —V(v-q)+ —, AVq +Vu,
Bt

where q =Vh. As a result of isotropy, u and v are regard-
ed as noises with a common correlation length, denoted g,
and with correlation time thus of order g/u'. In the ab-

sence of noise, q is identically zero and an initially planar
interface remains planar. It advances a distance ( in a
time interval (/k, which is shorter than the noise correla-
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tion time g/u' for u'«X (the weak-stirring regime).
Thus, the interface sweeps through the flow faster than
the characteristic time for the flow itself to evolve, so the
flow may be regarded as frozen, i.e., the t dependences of
u and v can be ignored. Furthermore, the effective corre-
lation time for the influence of the noise on the interface
is g/X rather than g/u'.

Equation (4) is regarded as an initial-value problem
for q(x, t) with q(x, 0) =0. The evolution of the magni-
tude of q and of the length scale characterizing its spatial
variation is analyzed in order to estimate the steady-state
value of q at which growth and decay mechanisms are in

balance. The respective terms on the right-hand side of
Eq. (4) govern the transverse redistribution of q, its de-

cay, and its generation by stochastic fluctuations, analo-

gous to the discussion in Ref. [1]. The only nonvanishing

term initially is Vu. During a time interval of the order
of the effective correlation time (/)i„ the growth of q in-

duced by this term may be regarded as deterministic. Es-
timating Vu as u'/g, this gives (q (

—u'/X and thus
q'-(u'/k)' at time (/X.

If this expression for q is substituted into Eq. (3), it

yields the previously derived quadratic dependence of
(Bh/Bt) on u'. This result would be correct if the flow

field were periodic rather than random, because then
there would be no dynamical time scale greater than the
time g/A, for the interface to sweep forward one period (.
The correctness of the quadratic dependence for periodic
flows has been demonstrated [8], but it has not been
recognized previously that periodic flow is an atypical
case because it precludes the further time development of
interface fluctuations. It is evident that the required bal-
ance between generation and decay of q is not yet
achieved because the decay term of Eq. (4) is of order
u'/A, ( at time g/A, , smaller by a factor u'/X than the
source term at that time. The further growth of q subse-

quent to time g/A, must be considered to obtain the re-
quired balance.

This subsequent growth reflects the stochastic nature of
the Aow field. Regarding the influence of the growth
term as a sequence of independent increments with time
step of order g/A. , q at time t » g/X is of order [t/(g/A, )] 't

times its value u'/k at time (/k. The growth rate is es-
timated by dividing by t, giving Bq/Bt -u'/(Apt) 't .

Growth continues until a time t* at which it is bal-
anced by decay. The decay term at given t is of order
A,q /l, where l is a length scale characterizing the trans-
verse variation of q. Since I appears in the denominator,
the decay mechanism is least effective at large I, so the
largest values of q will be associated with the largest
available length scale. The length scale introduced by the
Vu term in Eq (4) is g.. It is demonstrated shortly that
the length scale associated with the transverse redistribu-
tion term is smaller than (, so this term is irrelevant.

Balance is invoked by equating the growth rate Bq/Bt
to the decay rate based on the length scale I —g. This

gives a balance time t *—(X/u') t ((/X), and finally

q —(u /A. ) at this time.
Substitution of this result into Eq. (3) yields an in-

crease in the propagation rate proportional to (u'/X) t in
the weak-stirring limit u'((A. . The characteristic time
scale t* for interface wrinkling is smaller than the flow-
field correlation time g/u' by a factor of order (u'/A, ) '

Relaxation of transients occurs over a distance A, t *,
which exceeds the correlation length ( by a factor of or-
der (X/u')' '.

The irrelevance of the transverse redistribution term is
verified self-consistently. An upper bound on transverse
displacements induced by this term is given by t* times
the characteristic magnitude u' of v, yielding displace-
ments of order (u'/A, ) 't g. This is smaller than
confirming the claimed irrelevance. A direct estimate of
the characteristic transverse displacement over a time t
using the same reasoning applied to the growth of q, gives
(u'/A, ) t

g, smaller than the bound.
These results suggest a modification of the renormal-

ization group analysis of the propagation rate uT in fully
developed turbulence [7]. A general form governing the
weak-stirring limit is uT =)i, +cA, (u'/k)", where p = i ac-
cording to the present analysis, but the value p=2 was
adopted previously. (c is a numerical coefficient. ) The
renormalization group analysis obtains the cumulative
eff'ect of broadband stirring by successive iterations of the
equation uT' =uT' ' +cuT' ' (u' ' /uT' )", regarding
the previous iterate as the analog of A, for determination
of the next iterate, with uT =A, . (u' ' is the component
of the velocity fluctuation in the ith wave-number band. )
The formal solution for self-similar flow is

uT =kexp[c(u'/uT)t'] . (5)

For small u'/X, Eq. (5) yields the aforementioned
weak-stirring result. For large u'/A, (corresponding to
strong turbulence), Eq. (5) yields the scaling solution [9]
uT-u' multiplied by the factor (lnu')

It is not self-evident that the previous [7] analytical
justification of the formal derivation for the case p=2
remains valid for p = —', , due to the introduction of the
new time scale t* in the weak-stirring analysis. Never-
theless, Eq. (5) with p= —', has the practical advantage
that it yields the correct scaling in both limits.

The time scale t* for interface wrinkling impacts the

experimental realization of steady-state, spatially horno-
geneous propagation in weakly stirred Auids. Namely,
the longitudinal dimension of the experiment must exceed
A, t*—(k/u') (, where ( is the "integral scale" in fluid-
mechanical terminology. Experimental configurations
smaller than this are properly interpreted on the basis of
transient analysis consistent with the approach outlined
here, rather than on the basis of steady-state propagation
theory.

A general caveat concerning the interpretation of ex-
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perimental data based on the present analysis, including
Eq. (5) with either value of p, is that thermal expansion
and related eAects typically associated with the passage
of a chemical front through a medium have been omitted.
However, this should not invalidate the qualitative con-
siderations concerning the interpretation of experiments.

The scalings derived here for u T and t *, valid for spa-
tial dimension d ~ 2, are confirmed by numerical simula-
tions implemented in two and three dimensions. The
computations involve propagation of an initially linear in-

terface with interface growth rate X, through an orthogo-
nal (square or cubic) lattice of vortices with lattice spac-
ing g. The flow is steady in all cases, consistent with the
earlier observation that any time evolution of the flow is

irrelevant in the weak-stirring limit.
In the two-dimensional computations, the stream func-

tion of each vortex, referenced to the vortex center, is of
the form

+0.556u'g(3p —8p +6p' —1), 0 ~ p s I,
0, p&1,

corresponding to pure swirl flow specified by [10] ve

dy/dr. —(Here, p =2r/(. ) The polynomial expression
for 0& p & 1 is the lowest-order polynomial that gives a
finite-range vortex whose flow field is everywhere continu-
ous and differentiable. The coefficient 0.556 is obtained
by integrating v& over the unit cell of the lattice and set-
ting the result equal to u' .

1.5

Each simulated realization involves a flow field consist-
ing of a sum of stream functions of this form, referenced
to the respective vortex centers on the square lattice, in

conjunction with a rule for choosing the sign of each vor-

tex. This formulation assures that the flow field generat-
ed by the lattice of vortices is everywhere continuous and
differentiable for any pattern of vortex signs. It also al-
lows the construction of periodic and random flow fields
within a common framework.

A periodic case is obtained by assigning a checker-
board pattern of signs to the vortex stream functions.
Computations for this case yield quadratic dependence of
the propagation-rate increment uT —X. on u' for small
u'/A, . Consistent with the analysis [3,5j leading to Eq.
(3), uT/k is operationally defined as the mean interface
arclength divided by the transverse span of the computa-
tional domain.

A random case is obtained by independently choosing
the sign of each vortex, with equal probability of either
sign. Results of computer simulations encompassing a
factor of 8 variation of the ratio U'=u'/A, are shown in

Fig. l. The collapse of plotted values of (uT —
A, )/1I. U' /

vs U' t verifies the scalings of uT —
X, and t*.

The scalings are likewise verified in three dimensions,
based on a cubic lattice of vortices. Each vortex has the
same radial profile of swirl velocity as in the two-

dimensional case, modulated axially by a polynomial
weighting 2 —6s +4s for 0 ~ s ~ 1. Here, s =2~z (/g is

the scaled coordinate in the direction z corresponding to
the axis of the vortex, referenced to the center of the cu-
bic cell. The axial direction is assigned to be either trans-
verse coordinate of the lattice with equal probability.
The sign of the vortex with respect to the selected coordi-

1.0—

++ ~+x + +

0.0
0

0 i2/3t

FIG. 1. Time profiles of simulated propagation with inter-
face growth rate A, through a square lattice of vortices with ran-

domly chosen signs. Each time profile is an average of ten reali-
zations for given U'=u'/A. , where u' is the root-mean-square ve-

locity fluctuation. The width of the computational domain is

256(, with periodic boundary conditions applied in the trans-
verse direction. (( is the lattice spacing. ) The scaled prop-
agation-rate increment (ur —

X, )/kU' ~ is plotted vs scaled time
U' 'r for U'=0.00241 (+), 0.00482 (x), 0.00964 (A), and

0.01928 (o), where uT is the overall propagation rate and time
t is expressed in units of (/X.

U i2/3t

FIG. 2. Time profiles of simulated propagation through a cu-
bic lattice of vortices, each with orientation randomly chosen in

one of four directions corresponding to the transverse axes.
Each time profile is an average of five realizations for given U'.

The width of the computational domain is 2g. Profiles are plot-

ted as in Fig. 1 for U'=0.0018 (+), 0.0036 (x), 0.0072 (&),
and 0.0144 (0).
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nate is likewise assigned randomly. In this case, uT/)L. is

operationally defined as the mean interface area divided

by the transverse area of the computational domain. Re-
sults of simulations encompassing a factor of 8 variation
of U'=u'/A, are shown in Fig. 2.

Rigorous proof of the u' scaling of uT —k for u'«A,
is an open question. No rigorous proof yet exists of the
~eaker result that uT is finite, i.e., that statistically
steady propagation is achieved. The problem of bounding
uT is analogous to the recently solved problem of bound-

ing the effective diffusivity for turbulent transport [11],
but with the added complication that the field equation
for the present case is nonlinear, even in the weak-stirring
limit governed by Eq. (2).
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