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Direct Measurement of the Optical Goos-Hinchen Effect in Lasers
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The Goos-Hinchen longitudinal shift at total reflection of an optical Gaussian beam is experimentally
investigated for only one reflection. The differential experimental method uses the high sensitivity of the
eigenstates of a quasi-isotropic laser to small perturbations to measure an intracavity Goos-Héanchen
effect for angles of incidence both below and above the critical angle. The measurements are in good
agreement with our calculations of the longitudinal shift for Gaussian laser beams.

PACS numbers: 42.10.Fa, 42.10.Nh, 42.60.Jf

Since its discovery in 1947 by Goos and Hinchen [1],
the beam spatial shift due to the evanescent wave at total
reflection suspected by Newton’s corpuscular theory [2]
has been extended to many areas of physics, such as
acoustics, plasma physics, quantum mechanics [3], and
surface physics and chemistry [4]. It has been the subject
of many controversial investigations, theoretical as well as
experimental. The theoretical controversy [5] has mainly
been due to the existence of stationary phase models [6],
energy propagation models [7], ray models [8,9], and
plane-wave beam expansion models [10-13]. More re-
cently, the Goos-Hinchen (GH) effect has been used as
an argument in the discussion of the nature of light and
of the photon [14,15]. The experimental results concern-
ing the GH effect are meager, due to the experimental
difficulties. Except for nonlinear optics experiments [16],
two main kinds of experiments can be distinguished. The
first one consists of multiple-reflection optical experi-
ments that amplify the small (a few wavelengths) longi-
tudinal displacement of the beam [1,17-19]. The second
one consists of single-reflection microwave experiments
[20]. In the former case, no direct measurement of the
dependence of the GH shift on the incidence angle has
been obtained for only one reflection. On the contrary, in
the latter case, the large values of the wavelength allow
one to measure the GH shift directly for a single
reflection. However, in this case, the quality of the beams
is not very good and their transversal sizes are of the or-
der of magnitude of the wavelength. This leads to a large
distribution of wave vectors in the incident beam and con-
sequently to an averaging of the GH shift dependence on
the angle of incidence [10]. Consequently, it seems fun-
damental to perform an experimental measurement of the
evolution of the GH shift versus the angle of incidence for
a perfectly known optical beam in a single-reflection ex-
periment. We propose here a new method to reach this
goal, based on the sensitivity of the laser eigenstates to
small perturbations.

Let us consider the °He-’Ne laser oscillating at

A0=3.39 um shown in Fig. 1. The cavity is built with a
plane mirror (reflectivity 95%) and a spherical mirror
(reflectivity 64%) with radius of curvature R=1.2 m. It
contains a 45°-90°-45° silica prism (index of refraction
n=1.409) that leads to total reflection for angles of in-
cidence i above the critical angle i.=45.212°. This
reflection on the air-prism diopter leads to the existence
of a GH spatial shift between the TE (perpendicular to
the plane of the cavity) and the TM (parallel to the plane
of the cavity) polarizations. The eigenstates of this cavity
are linearly polarized TE and TM eigenstates and are
spatially separated in one part of the cavity, i.e., between
the prism and the plane mirror. Their eigenfrequencies
and intensities are determined by their dephasings and
reflection coefficients due to the internal reflection. De-
pending on the value of the angle of incidence i that
governs the phase and loss anisotropies of the two eigen-
states, the oscillation regime can be a one-eigenstate re-
gime or a vectorial bistability [21] or vectorial simul-
taneity oscillation regime. Besides, it has been estab-
lished that when a laser is made quasi-isotropic, a pecu-
liar behavior occurs [22]. The laser becomes indeed very
sensitive to very small longitudinal magnetic fields (frac-
tions of a gauss) that induce nonreciprocal Faraday rota-
tion in the active medium and lead to a periodic rotation
of the linear polarization of the laser light. To prepare
our system containing the prism to make it behave like a
quasi-isotropic laser, the phase and loss anisotropies de-
scribed by Fresnel’s formulas [23] must be carefully com-

FIG. 1. Experimental setup.
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pensated. A tilted silica plate is introduced inside the
cavity to compensate for the extra losses undergone by
the TM mode relative to the TE mode at internal
reflection for angles around the critical angle. A stressed
silica plate is also introduced to compensate for the phase
anisotropy induced by Fresnel’s laws for i > i.. Once the
cavity is prepared to have overall anisotropies as weak as
possible, the application of a very small longitudinal mag-
netic field (a fraction of a gauss) on the active medium,
via a solenoid, makes the polarization rotate periodically,
at frequencies of the order of several tens or hundreds of
kHz. If a small overall loss anisotropy is created inside
the cavity, the polarization, which can be considered as
linear for weak anisotropies, passes periodically from the
low-loss axis to the high-loss axis, leading to a periodic
modulation of the losses of the laser. Since the modula-
tion period (a few micoseconds) is much longer than the
lifetime of photons in our “bad” cavity (a few nano-
seconds) and the atomic relaxation times (also a few
nanoseconds), the intensity of the laser follows adiabati-
cally the modulation of the losses. When our system is
well prepared so that the anisotropies are carefully com-
pensated, the residual intensity modulation is less than
0.1%.

Let us then introduce a knife edge inside the cavity
where the two eigenstates are spatially separated, as
shown in Fig. 1. Because of the GH spatial separation of
the two eigenstates, the diffraction losses due to this knife
edge are different for the TE and TM eigenstates, leading
to a diffraction ““loss anisotropy.” When the polarization
rotates, this leads to a modulation of the total intensity of
the laser of a few percent, as shown in Fig. 2(a). The po-
larization effect is transformed into an intensity effect.
Schematically, we can say that the beam oscillates
transversally with respect to the knife edge, with an am-
plitude equal to the GH shift. The detection of the time
evolution of the intensity detected through a polarizer
shows a modulation depth very near 1, showing that the
loss anisotropy is low enough to allow us to treat the po-
larization as a rotating linear polarization. The total in-
tensity modulation is a direct observation of the GH spa-
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FIG. 2. Typical total intensity modulation signals due to (a)
modulation of the position of the beam with respect to the knife
edge (horizontal axis, 5 us per division; vertical axis, 1.6%
modulation per division) and (b) modulation of the position of
the knife edge with respect to the beam (horizontal axis, 0.2 s
per division; vertical axis, 3.2% modulation per division).
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tial shift between the TE and TM eigenstate. But we
need a reference to calibrate our measurements. Our
knife edge is mounted on a piezoelectric transducer that
provides a 60-um peak-to-peak displacement at 5 Hz.
Consequently we just have to cut the small longitudinal
magnetic field and make the knife edge vibrate to know
which modulation of the total intensity corresponds to a
displacement of 60 yum. Such a typical calibration modu-
lation is shown in Fig. 2(b), corresponding in this case to
a displacement of the knife edge relative to the beam.
Since the loss anisotropies introduced in both cases are
small compared to the total losses of the laser, the intensi-
ty modulation depth is linear with this loss anisotropy.
Moreover, since the knife edge is only very slightly intro-
duced inside the beams, we can consider that the
diffraction loss anisotropies are in both cases proportional
to the peak-to-peak relative displacements of the beam
and the knife edge. Consequently, the GH effect is equal
to the ratio of the two modulation amplitudes multiplied
by 60 um.

To compare our experimental results with theory, we
extend the calculations of Ref. [12]. We consider the GH
effect as being the result of interferences between the
differently reflected Fourier components of the given in-
cident beam. The incident beam inside the prism can be
written as

i 1 2jn .. .
E'=——exp|— (xsmt—zcos:]
Vg [ A
. . .2
Xexp{— 2jn (xcosi+zsini) ] )
q 2A

where x, y, and i are defined in Fig. 3, A=A¢/n is the
wavelength inside the denser medium, and the complex
beam parameter g is

g =nd + x sini — z cosi + jawg/A 2)

where wg is the beam waist on the plane mirror and d is
the distance from the beam waist. The Fourier com-
ponents of the beam incident on the interface are given
by
+ oo
Ay =7 M,z =0)dx, &)

with kK =2n/A. The Fourier components of the reflected
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FIG. 3. Gaussian beam incident on a diopter with angle of
incidence /.
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FIG. 4. Difference between the TE and TM GH shifts vs the
angle of incidence. Solid line, theory; dotted line, Artmann’s
formulas; points, our measurements.

beam are then given by
A"(u) =Rlarcsin(u)1A4'(u) , 4

with R given by Fresnel’s laws for each polarization [23].
The GH shift can then be given by the mean abscissa of
the output intensity:
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The quantity that we must compare with our experi-
mental results is A= (xtm — x%e) cosi, i.e., the difference
between the TM and TE GH shifts. This comparison is
shown in Fig. 4 with wo=800 um and n=1.409, corre-
sponding to our experimental conditions. A good agree-
ment is shown between theory and experiments. The cor-
responding calculations with Artmann’s formulas [6] are
shown by the dotted line, showing that these formulas are
valid when i—i. is larger than the divergence of the
beam, i.e., when all the Fourier components of the beam
are totally reflected.

In conclusion, we have shown that our experimental
method based on the sensitivity of laser eigenstates to
small perturbations allows one to isolate small surface
effects. This method has been applied to the direct mea-
surement of the GH spatial shift for a single reflection of
a Gaussian beam. Good agreement has been found be-
tween our plane-wave beam expansion model calculations
and experiments both below and above the critical angle.
This method can have other applications, such as mea-

F=

(5)

surements of the still smaller transversal spatial shift for
the circularly polarized beam investigated by Fedorov
[24] and Imbert [25] or the determination of surface
properties of optically transparent materials like semicon-
ductors [3].

Laboratoire d’Electronique Quantique-Physique des
Lasers is CNRS URA 1202.
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