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"Atomic" Determination of the Na, Mg, and Al Nuclear Quadrupole Moments:
How Accurate Are the "Muonic" Values' ?
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The quadrupole moments of -"Na and -"Al are determined by combining the calculated electric-field
gradients of Na(3p -P') and Al(3p -P') with experimental quadrupole coupling constants. Q("Mg)
was determined previously using the same method [Nucl. Phys. A534„360 (1991)]. Contrary to
Q('-'Mg) the "atomic" values for Q(-"Na) and Q(-'~AI) lie outside the error limits of the "muonic"
values. The obtained values for Q(-"Na), Q(-"Mg), and Q('- Al) are 0.1089(32), O. I994(20), and

0.1402(IO) b, respectively, as compared to the muonie values of 0. I006(20), 0.20l (3), and O. I 50(6) b.

PACS numbers: 31.20.Di, 21.10.Ky, 31.20.Tz, 31.30.GS

A nuclear quadrupole moment g can be obtained from

the experimental quadrupole coupling constants, eqg/h
or 8, combined with an estimate of the electric-field gra-
dient at the nucleus, q. An early method was to obtain q
from the (r ') values in magnetic hyperfine coupling and

to introduce Sternheimer corrections [1] to account for

quadrupole shielding. Alternatively, q can be obtained
from high-quality ab initio calculations on atomic or
molecular systems without any further correction factors.
The relation between q (in atomic units, a.u. ), g (in

barns, I b= 10 -'"
m ), and the quadrupole coupling con-

stant qeg/h (in MHz) is

g = —(eqQ/h )/234. 9647q .

In this work the quadrupole moments are deduced from
the experimental qeg/h using accurate multiconfigura-
tion Hartree-Fock values for q. Previously, the quadru-

pole moments of Be [2], ' B [3], "B [3], ''C [4], ' N

[5] ' 0 [41 'Ne [4] 'Mg [6], S [7], and "S [7] have

been determined using the same methods.
Nuclear-model-independent quadrupole moments can

also be provided by mesonic x-ray experiments [8]. The
quadrupole moments of -' Na [9], 'Mg [10], and Al

[10,11] have been obtained from the hyperfine splittings
of the muonic atoms, i.e., atoms where one electron is re-

placed by a muon. In muonic atoms, the muon moves al-

most independently of the electrons and penetrates the
nucleus only slightly. The orbits of the muon are almost
hydrogenlike, and the electric-field gradient of the muon

can be obtained by solving the Dirac equation for the
moon. Ho~ever, small corrections must be made for nu-

clear finite-size eAects, vacuum polarization, nuclear po-
larization, and magnetic hyperfine structure [8-11]. The
nuclear finite-size (penetration) effect which is the largest
of these corrections changes the estimate of the quadru-
pole moments of Na, Mg, and Al by about.
1.0%-1.5% [9,10]. However, the main source of uncer-
tainty of the muonic-experiment values is statistical error.
The free parameters in the fit to the experimental spectra
were the height of the background, the quadrupole mo-
ment, and the position and the absolute intensity of the

x-ray line [8-11].
Nuclear scattering experiments [12-171 have also been

used to obtain values for quadrupole moments. The un-

certainty of the values obtained from a scattering experi-
ment is at least 10%. One exception is the quadrupole
moment of Li which has recently been determined from

nuclear scattering data with an accuracy of 1.5% [17].
Nuclear theory calculations also provide values for

quadrupole moments, the accuracy of which is about
10%-20% [18-23].

The purpose of this work is to calculate the electric-
field gradients of Na(3p; P3tz) and Al(3s 3p; P3t2) with

an uncertainty less than 1%, and to deduce accurate
quadrupole moments of Na and Al from them and ex-
perimental data. This method is completely independent

of that of the muonic measurement. The confidence of
the muonic experiments can therefore be checked by

comparing the "atomic" values for Q( Na), g('-Al),
and g( 'Mg) [6] with the corresponding "muonic" re-

sults.
The finite-element multiconfiguration Hartree-Fock

(MCHF) method used in this work has previously been
discussed in Refs. [2-7,24,25]. To facilitate the selection
of the configurations, the MCHF method is based on the
restricted active space (RAS) [26,27] method. The RAS
method is a generalization of the complete active space
(CAS) method [28]. In the RAS method, the active or-
bital space consists of three subspaces, the RAS I, the
RAS II, and the RAS III. In a RAS calculation a lower
limit is given for the number of electrons in RAS I, and
an upper limit is given for the number of electrons in

RAS III, while no restriction is put on the number of
electrons in RAS II. The following notations are used for
the RAS calculations: inactive orbitals//the orbitals of
RAS I [minimum number of electrons in RAS I}/the or-
bitals of RAS II/the orbitals of RAS III (maximum

number of electrons in RAS III). When a minus sign ap-
pears in the notation it means that all the orbitals to the
left of the minus sign are frozen, while those to the right
of the minus sign are fully energy optimized. The num-

ber ol' local basis functions (grid points) per symmetry is
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201 resulting in a basis-set truncation error in the
electric-field gradient of less than 10 a.u.

Sodium. —The multireference, all singles and doubles
(MR-SD), sp and spd limits for q of Na( P) are ob-
tained as follows: The slight polarization of 2p caused by
the 3p electron is di%cult to describe with fully energy-
optimized shells, so the Hartree-Fock (HF) shells are
augmented by a polarization p shell. In the optimization
of the polarization p shell (2p*), the HF shells are frozen
while 2p is optimized and only single excitations are al-
lowed from 2s and 2p to 3p and 2p*. In the subsequent
calculations, the HF shells and 2p* are frozen. The ac-
tive set of shells is systematically augmented by energy
optimized s, p, and d shells until the change in q becomes
small enough to be neglected. We did not find it neces-
sary to construct polarization shells of s and d symmetry,
while a polarization shell of f symmetry significantly im-

proved the convergence of q with respect to the number
of f shells. The largest MR-SD RAS calculation in the
spd basis [ls//Is I p[6}/I p/Ip —Ss4p5d(2)] yielded a q
of —0.1069 a.u. , while the corresponding M R-SD
configuration interaction (CI) calculation in the same sp
shells [Is//I s I p [6}/Ip/5s 5p —(2) ] yielded a q of
—0.1084 a.u. In the sp basis triple excitations from 25
and 2p increased q, in absolute value, to —0. 1101 a.u.
which is also the sp limit since quadruple and higher exci-
tations from 2s and 2p did not significantly change q.
Triple excitations to d shells contribute —0.0015 a.u. and
the spd limit becomes —0.1102 a.u.

In order to reduce the number of f shells needed for
estimating the f-shell contribution to q, a polarization

f shell was constructed and added to the active set of
shells. The polarization f shell was obtained from a

2s//I p [5}/Ip/3s 4p 3d —If(2) RAS calculation. The
final f-shell contribution of' 0.0021 a.u. was estimated as
the difference between the 2s//I pI4}/lp/3s4p3d —(2) CI
calculation and the 2s//I p [4}/Ip/3s4p3d2f —

If(2)
RAS calculation. The g-shell contribution to q became
0.0003 a.u. and the contributions from higher symmetries
are probably smaller and neglected. The relativistic
correction to q of —0.0005 a.u. is estimated from a
quasirelativistic CI calculation. This value is in agree-
ment with literature values [29,30]. In the quasirelativis-
tic calculation the Darwin and the mass-velocity integrals
are added to the one-electron integrals and a CI is per-
formed with modified integrals. In all Na calculations Is
is inactive.

Aluminum The valence lim.—it for the q of Al( P) of
—0.4147 a.u. is calculated in a 2s lpII0}/4s4p3d2f set of
energy-optimized shells. The 3p electron will polarize the
1 s -25-2p" core. In the core-correlation calculations, the
2p is correlated, while ls and 2s are inactive. The sp lim-
it of —0.5331 a.u. is obtained by adding the contribu-
tion from higher excitations of —0.0010 a.u. to the
2s//I s 2p/6s 6p —(2) CI calculation. The I s 2s 2p 3s 3p
shells are the most occupied shells of the 2s//2s3p CAS
calculation. The four first RAS III shells of both s and p

TABLE I. The limits of the electric-field gradients at the nu-
clei of Na(3p; P), Mg(3s3p; P), and Al(3p; P) (in a.u. ).

Limit

Hartree-Fock
.~p limit"
spd limit "
NR limit"
C-Y corrected '
Rel. corrected "

q(Na)

—0.0677
—0.1101
—0.1102
—0.1078

—0.1083(9)

q(Mg)"
—0.2429
—0.3355
—0.3402
—0.3402
—0.3402
—0.341 7 (34)

q{A1)

—0.4353
—0.5331
—0.5696
—0.5720
—0.5710
—0.5738 (40)

"Reference [6l.
"For Na the contribution from the Is-' core is neglected. For
Mg, the core-core and core-valence corrections are included in

the sp limit. For Al, 1s -2s - is the core.
'Core-valence correlation corrected values (see footnote b).
"Final result. The relativistic corrections are estimated from
quasirelativistic C 1 calculations (see text).

symmetry are obtained in a 2s//Is2p/ —4s4p(2) RAS
calculation, and the remaining sp shells of the
2s//I s 2p/6s 6p —(2) CI calculation are the energy-
optimized s and p shells of the 2s//Ip[4}/Is lp/4s4p
—2s 2p (2) RAS calculation. The contribution from

higher excitations is the difference between the electric-
field gradients obtained in the 2s//2s3p CAS and the

2s//Is 2p/
—Is 1p(2) RAS calculations, respectively.

The d-shell contribution to q is the difference between the
ones obtained in the 2s//I s 2p/ —4s 4p (2) and the
2s//I p [4}/Is Ip/4s 4p3d —I d(2) RAS calculations. The
correction for higher excitations due to the smaller refer-
ence space of the 1-shell calculation is only 0.0002 a.u.
The fifth d shell contributes 0.0012 a.u. to q, and the final

d-shell contribution becomes —0.0365 a.u. The f-shell
contribution of —0.0024 a.u. is estimated from the
valence calculations. The contribution from higher sym-
metries is less than the f-shell contribution and may be
neglected. To estimate the contribution from Is and 2s,
core-valence calculations are performed. In the core-
valence calculations only single excitations are allowed
from the core orbitals. The core-valence orbitals of the
RAS III space are optimized, while the core and the
valence orbitals are frozen. The core-valence correla-
tion correction to q of 0.0010 a.u. is the difference be-
tween the ones obtained in the 2s [3}/Is I p/4s 5p 2d
—ls lp ld(2) and in the 2s//ls lp/4s5p21 —(2) calcula-
tions. The relativistic correction to q of —0.0015 a.u. is

obtained from a quasirelativistic CI calculation in the
2s//ls2p/4s4p2d —(2) shells. The calculations are sum-

marized in Table I.
The atomic determinations of nuclear quadrupole mo-

ments rely on the measurement of the nuclear quadrupole
coupling constants. For Al and Mg, the experimental
eqQ/h are accurate, and the error bars of the quadrupole
moments are due only to computational uncertainties.
There are many measurements of the quadrupole cou-
pling constant (eqg/h) for Na(3p P&p). These exper-
iments have been reviewed by Arimondo, Inguscio, and
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TABLE 11. The quadrupole moments of 'Na, -'Mg, and Al (in mb) compared to values

from the literature. (PW stands for present work. )

Method "

hfs+ HF calc.
hfs+ MCHF calc. "
hfs+ atomic calc.
hfs
hfs+ Sternheimer
M uonic experiment
Nuclear scattering
Nuclear theory
Nuclear theory
Nuclear theory

Q(-"Na)

174. 1

108.9 (32)
106 '
128(9)
103
100.6 (20)
101(7)
103.4
115
102.4

Q(-"Mg)

280.5
199.4 (20)
200(10)
220

~ ~ ~

201(3)
196(4)
186.9
206'
2354

g(-"Al)

184.9
140.3 (10)
165(2)
149(2)
140(2)
150(6)
155(3)
134
150.8
138.9

Refs.

PW, 6,PW
PW, 6,PW
29,37,38
39,40,41

39, . . . , 42
9, 10,10
15, 15, 15
19,19,18
18,20, 19
23,20,23

"hfs stands for hyperfine structure. The quadrupole coupling constants are 2.77(6) MHz [32],
16.009(5) MHz [401, and 18.91526(70) MHz [43,441 for Na(-'P), Mg( P), and Al( P), re-
spectivelyy.

"The error bars include both the experimental and the computational uncertainties.
'Obtained using the eqg/h of Ref. [32] and q of Ref. [29].
"In the adiabatic approximation and assuming an axial charge distribution of the nucleus.

1.14

1 ~ 12 ~-

1 10~
1.08 t
1.06;
1.04-
1.02,
1.00 I--

0.98—
0.96—
0.94 .;
0.92 I-

0.90 .
-

0.88.,-
0.86

Q / Q(muonic)

Mtlonic =Atomic

Na Mg Al

&IG. 1. "Atomic" Q values for nuclei '-'Na, -"Mg, and -' Al
expressed in terms of the "muonic" Q values.

Violino [31]. Based on the experimental results, they es-

timated an averaged value for the eqg/h of 2.90(21)
MHz. The same year Krist et al. [32] measured, using
the zero-field quantum beat method, an eqg/h of 2.77(6)
MHz which is, according to the authors, probably the
most accurate value.

From the computational point of view, it is much easier
to calculate q with the same relative accuracy for core-
excited states such as 2p 3s3p ( D) or 2p 3s3d ( F)
than for valence states. Experimental determinations of
the eqg/h for these core-excited states or corresponding
2p' states of Na+ would therefore be very desirable.
Similar measurements have already been performed on

potassium [33]. There are also high-quality ab initio cal-
culations for q on NaH [34], but no spectroscopic data.
Accurate eqg/h for the NaF [35] and NaCI [36] mole-

cules exist but the high-quality calculations remain to be
done.

In Table II, the present values for the quadrupole mo-

ments of -' Na, 'Mg, and Al are compared to those
from the literature. The details of the Mg calculations
are reported in Ref. [6]. The electric-field gradient of
Na( P) has been calculated by several authors
[29,45-47]. By combining them with the eqg/h of Krist
et al. [321, the values for Q( Na) become 109.7 [45],
108.5 [46], 105.4 [46], 99.3 [47], and 105.9 mb [29], re-

spectively. For Mg, the calculation by Bauche, Couar-
raze, and Labarthe [37] yields the same Q( Mg) as the
MCHF calculation of Ref. [6] and as the muonic experi-
ment, but with larger error bars. For Al, the previous
calculation by Rodgers, Roy, and Das [381 provides a

g( Al) which is 18% too large compared to the present
MCHF value. The Q( 'Na) value obtained from the
hyperfine structure and adjusted for quadrupole shielding
using Sterheimer factors [39] agrees well with the muonic
value, while the corresponding result for g( Al) [42]
agrees with the present MCHF result.

The present g( Na) is about 8% larger than the
muonic value, the present g( Al) is 7% smaller than
that of the muonic experiment, while the atomic and the
muonic values for g( 'Mg) agree within their stated un-

certainties (see Fig. I). We can therefore not avoid the
conclusion that the uncertainty of the muonic x-ray tran-
sition experiments may be larger than expected.
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