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Spatial Solitons in Photorefractive Media
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%'e show that photorefractive media can support a new type of spatial soliton, in which the diA'raction

is balanced by the self-scattering (two-wave mixing) of the beam spatial frequency components. This

photorefractive soliton possesses some unique properties, such as independence of the absolute light in-

tensity, and can experience absorption (or gain) with no change in its transverse structure.

PACS numbers: 42.65.—k, 42.50.Qg, 42.70.—a

Light solitons in space (spatial solitons) have been the
object of intensive theoretical and experimental research
during the last three decades. The solitons evolve from
nonlinear changes in the refractive index of the material,
induced by the light-intensity distribution. When the
confining effect of the refractive index exactly compen-
sates for the effect of diffraction, the beam becomes self-

trapped and is called a spatial soliton. The nonlinear
effects which are responsible for soliton formation are in

general Kerr-like effects, inducing local index changes
proportional to the local light power. The index changes
needed for spatial solitons require high power densities,
and these often exceed l MW/cm (see Ref. [1]).

We describe in what follows a new type of spatial soli-

ton, generated by the photorefractive (PR) effect of the
medium. The shape of the soliton modulates the refrac-
tive index via the PR effect, which results in an exact
compensation for the effects of diffraction, and causes the
light beam to propagate with an unvarying profile. This
index modulation is represented in the formalism as a dis-

tribution of index gratings, each one of them induced by
the interference between two spatial (frequency) plane-
wave components of the light beam. Since the efficiency
of this effect is independent of the absolute light intensity,
these new solitons can be generated even at very mod-

erate light intensities. Moreover, a given soliton wave

form can propagate unchanged in the medium, at very

high or very low light intensities (and at all levels in be-
tween).

The PR solitons correspond to steady-state solutions of
the nonlinear wave equation which describes beam propa-
gation in PR media and accounts for both diffraction and

the mutual interaction between each pair of spatial com-
ponents of the soliton beam. Since the key to this non-

linear scattering process is grating formation by a contin-
uum of Fourier (plane-wave) components of the soliton
beam, we cannot resort to the two-plane-waves analysis
commonly applied to PR materials. Our general formal-
ism accounts for the transverse beam spatial structure.

%e start by deriving the nonlinear wave equation
which describes the propagation of a monochromatic op-
tical beam of a given frequency (co) and polarization,

traveling in the positive direction of an arbitrary axis z.
We assume the absence of nonlinear interaction between

orthogonal polarizations (anisotropic scattering [2]), so
that our problem can be reduced to a scalar formulation.
Light propagation in nonlinear media can be conveniently
described using coupled-mode theory [3], applied to the
case of unbounded media for which an appropriate set of
spatial modes is the continuum of plane waves [4]. The
electric field associated with the light beam propagating
primarily along the z direction is written as

E(r,z, t) =—e' "' "') E(q, r)e' ' 'f(q, z)dq+c. c.

—= —'[A(r z)e'"' ""+cc]
where, employing the paraxial approximation, pv«q,
and

E(q, r) =(I/2tr)(po/eon ) 'I e'q',

r =—(x,y), k =tun~/c is the light wave number, n~ is the
unperturbed index of refraction in the medium, and

f(q, z) is the spatial frequency (angular) distribution of
the complex amplitude A(r, z). A spatial mode (plane-
wave component) is characterized by the projections
of its wave vector (q and Pv) on the transverse (r) and
longitudinal (z) directions, respectively, with pv=(k
—

q ) 'I (where q is restricted to Q ~ q ~ k). Assuming
negligible absorption, and under the rather general condi-
tions specified in Ref. [4], it is easy to show that A(r, z)
obeys, in the presence of a refractive-index distribution
n(r, z) =n ~+bn(r, z), the differential equation

r

V, A(r, z) = bn(r, z)A(r, z) . (3)

The nonlinear term bn(r, z) is obtained by considering
the matrix process between two plane waves. %hen only
one pair of plane waves (spatial modes) q~ and q2, of field

amplitudes a~(z) and a2(z), is present in the medium, it
induces an index grating bn(r, z) which is proportional
to the time-averaged interference pattern between the
waves. The proportionality coefficient is a complex factor
bti(qi, q2), which represents the PR coupling coefficient
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between the two plane waves, given the material proper-
ties (the orientation of the PR crystalline medium, its

trap density Pd, nt, and dc dielectric constant e„)and the
polarization of the waves. In this simple case, bn(r, z) is

[5]:
l {ql F+Pq Z )

bn(r, z) =(I/Io)[a~(z)e ' az (z)
—i(q2 r+P~ Z)

xe ' 6n(q~, qz)+c.c.},
where 10=~a~~ +~az[ is the absolute light intensity.
Since Bn (r,z ) is real (no absorption) we get [5]
bn(q~, qz) bn*(qz, q&). The term bn(q~, qz) is the prod-
uct of two factors: r,a(q~, qz), which is the scalar prod-
uct of the material electroptic tensor (and depends on the
orientation of the PR crystalline medium), and E (q~,
qz), which is the coefficient of the induced space-charge
field [6] and depends only on the interference grating
wave vector (Kz) between q~ and qz.

When more than two plane waves are present, bn(r, z)
involves a summation over all the possible interacting
plane-wave pairs. For a given light beam A(r, z), which
consists of a continuous spatial-frequency spectrum of
plane waves f(q, z), this summation takes the integral
form:

1
Bn(r,z), dq~ dqzf(q~, z)f*(qz, z)Arz 4

absolute light intensity, bn is normalized by the factor
)A(r, z) ( . In addition, a constant factor representing the

dark irradiance [7] may be added to the light intensity in

the denominator of Eq. (5), to avoid unrealistic diver-

gence of Bn in dark regions. In our analysis we neglect
this constant. We note that this model of beam propaga-
tion in photorefractive media has proven effective in the
interpretation of a variety of wave-mixing processes [6],
and in particular, was used for predicting a number of
new phenomena (such as incoherent backscattering [8]).

Here we are interested in the simplest way of generat-
ing a spatial soliton. Since difl'raction can be viewed as
due to a linear phase accumulation in each plane-wave
component of the light beam, the simplest way to com-
pensate for it is through equal and opposite nonlinear

phase delays, as in the Kerr-like solitons. Accordingly,
we assume the PR coupling coefficient bn(q~, qz) (and
hence E ) to be real, and hence introduce nonlinear

phases only (i.e., no "energy transfer" between the pairs
of spatial components). Furthermore, since diffraction is
essentially a symmetric process, the simplest solution is

obtained by requiring a symmetric nonlinear process, i.e.,
bn(r, z) bn( —r, z) [and hence bn(q~, qz) Bn( —

q~,—qz)], which implies a symmetric soliton wave form,
A(r, z) -A( —r,z).

In the most general case, bn(q~, qz) can be expressed as

'(p~, -p~, )
XE(q~, r)E (qz, r)e " " bn(q~, qz) . (5)

I

bn(q), qz) - g(p, p')e '"' +" 'dpdp', (6)

Note that since the PR nonlinearity is independent of the
so that, from Eqs. (I ) and (5), we get

1
fO

bn(r, z) =
z

A(r —p, z)A (r+p', z)g(p, p')dpdp'.
A r, z

Note the explicit nonlocal nature of the PR efl'ect, which is brought out by Eq. (7). By inserting Eq. (7) into Eq. (3),
the equation of evolution of the electromagnetic field reads

r

8 A(r, z) = A(r —p, z)A (r+p', z)g(p, p')dpdp',ik I

where the integral on the right-hand side accounts for the nonlocal nature of the photorefractive effect. In particular, if
we look for soliton solutions, we require

A (r,z) U(r)e'"',

where U(r) and y are real, y being the characteristic soliton propagation constant. Equation (8) becomes then

1, k 1
V,' U(r)= U(r —p)U(r+ p')g(p, p')dpdp'.

2k n~ U(r) 4 ~
(lo)

The integrodifl'erential Eq. (IO) can be transformed into an ordinary differential equation by using the Taylor expansion
of U(r —p) around p =0:

U(r, p) =U(r) —V,U(r). p+ —,
' [V,U(r)V, U(r)]:pp+

along with an analogous expansion for U(r+ p') around p' =0, and inserting it into its right-hand side.
Truncating the Taylor expansion to a given order (the second, in our case) requires that the nonlocal influence of the

924



VOLUME 68, NUMBER 7 PHYSICAL REVIE% LETTERS 17 FEBRUARY 1992

PR effect is restricted to a limited region of a given linear dimension [say d, where d is dictated by the form of
bn(qi, q2)] around any position r. It is worthwhile to note that due to the invariance of bn(r, z) under the exchange
r —r, the odd-order terms of Eq. (11)do not contribute to the right-hand side of Eq. (10).

For simplicity, we restrict our analysis to a two-dimensional case, allowing diffraction in the y direction and looking
for self-trapping in the x direction only (we note that our model is valid in the three-dimensional case as well). In this

case U(r) -U(x), and we obtain, by truncating the Taylor expansion after the second term,

1 d
U

km d U(x) kp 1 dU(x) +kh 1
y 2k dx n i dx n i U(x) dx n i U(x)

Ux
2

d'U(x)
dx'

(i2)

with

h h

m -— g(p, p')(p'+ p')dpdp'

, bn(q i,q2)
dq i2

qi P,q2 0

p-, „g(p.p')pp'dpdp'

bn(q i, q2)
dqi dq2 q, -o,q, -o

(i4)

4 „„g(p.p)p p dpdp

1 d' d
, bn(q l, q2)

2 dqi dqz q, oq& o
(is)

where now p, p' and qi, q2 stand for p„,p„' and qi„,q2„
and we have also taken advantage of the relations
bn(0, 0) -0 (see Ref. [9]) and bn(qi, q2) -bn(q2, qi).
As will be shown further on, h and the higher-order terms
are smaller than m and p by powers of d, and therefore
neglected. A rearrangement of the terms in Eq. (12) re-

sults in

U(x) Uosech(ax),

which is consistent with our requirement of symmetry un-

der the exchange x —x, and with a decay with ixi
within a region of linear dimension d. The soliton propa-
gation constant is y ba )0, where —a satisfies the
condition ad(&1 to justify the truncation of the Taylor
expansion.

The nonlinear parameters a and b, and the "effective
length" (d) of the PR interaction, are determined from
bn(qi, q2). The requirement of a real bn(qi, qz) for all

ql and q2 is equivalent having a real E (qi, qz), which in

turn implies the application of an external (dc) electric
field Ep to the material. In our case of PR interaction be-
tween pairs of plane waves with relatively small angular
deviation (spatial components of the same beam, under
the paraxial approximation), the limiting space-charge

aU' +bUU" —yU

where the prime stands for a derivative with respect to x,
and we have set a pk/ni —and b =km/ni+ I/2k. In
the special case, where a —2b, Eq. (16) is satisfied by
the solution

field E„is relatively large and the diffusion field Ed is
small. Application of an appropriate external field, such
that iEgi« iEoi« iE„i,allows us to neglect the imagi-
nary part of the coupling coeScient, so that

E E
Eo + (Ed+ Er ) (Eo/Ep) + 1

where E„=ePd/coo,Kg and, under the paraxial approxi-
mation, Kg-q] —q2. Note that E is always symmetric
with respect to both qi, q2, i.e., E (qi, qz) E ( —qi,—qz). In order to maintain this property for bn(qi, q2)
we apply this symmetry requirement to r,s(qi, q2), and
choose the direction of propagation (z) and the polariza-
tion of the light beam accordingly. As an example, we
consider the coupling coefficient for a field polarized in

the x-z plane in BaTi03 crystal, when the x direction has
been adjusted to coincide with the crystalline c axis (we
neglected the relatively small Pockel's coefficients, other
than r4z):

ni 0.5 (q 1 +q 2)
bn(q i, q2) = r42Eo

I + (Eoeoe /ePd ) '(q i
—

q 2) '

=—8 [(qi+q2)/k]'
1+d'(q i

—q2) 2
(i9)
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According to the definition of m, p, and h [see Eqs.
(13)-(IS)] and the expression of bn(qi, q2), it is a
straightforward task to find m p —28/k and h

48d /k, so that h 2d m. We have evaluated the
factors 8 and d by employing the parameters used in Ref.
[10] and the condition a —2b, thus getting 8-+ I (in
dimensionless units) and d-14 pm. The neglection of
the "h" term, along with higher-order terms, in Eq. (16)
is therefore justified. It is then possible to show that, the
condition ad & I is equivalent to y = ba a /2k-

k(a/k) /2 & k, which can be satisfied by choosing a to
be a small fraction of k. Note, that 8 imposes a positive
sign to the externally applied electric field Ep, and a re-
quirement for a large nonlinearity.

The soliton solution for a=0.05 pm ', for a given
("frozen") time to, is shown in Fig. 1. The vertical axis
represents the light-wave field amplitude E(x,z, t =to) in

arbitrary units (a consequence of the PR effect is in-
dependence from the absolute light intensity iAi ), and
the other axes are x and z in pm.

Since our solution was obtained assuming a real cou-
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FIG. l. A three-dimensional plot of the light electric field

E(x,z, t) for a "frozen" time t =tp. The vertical axis gives the

amplitude in arbitrary units, and the horizontal axes are x and z

in pm.

pling coefficient bn(q ~, qz), an arbitrary input profile does
not evolve into the soliton shape as in the case with tem-
poral Kerr-like solitons. A real bn(q~, q2) does not allow

for energy transfer between plane-wave components, so
that one must start with the correct wave form which

compensates exactly for the diffraction. Once launched,
small deviations from the proper solution neither decay or
grow, but maintain both the original deviation and the
accompanying diffraction, in a "quasistable" situation. A
degree of fine tuning of the PR effect (and hence of the
soliton width) is allowed by varying the externally applied
electric field Ep (which determines the value of b). Note
that for reversal of the polarity of Eo, the linear dif-
fraction and the nonlinear phase are additive and we get
"double" the diffraction effect.

The inclusion of absorption (or amplification) in our
model results in a soliton which maintains its transverse
profile even as the total light intensity increases (gain) or
attenuates with propagation. In the absorption case, for
example, a linear term oA(r, z) is added to the left-hand
side of Eq. (8), and the soliton propagation constant y is
allowed to be complex. If we take the imaginary part of
y equal to —cr, we still get Eq. (10), with y replaced by
its real part y, . The resulting soliton is U(r)e'"", and
the transverse structure remains unchanged.

Material considerations are of great importance for the
practical realization of a PR soliton. We look for a PR
media in which the diffusion field Ed [responsible for the
imaginary part of Sn(q~, q2)] is as small as possible, but
which still presents a strong PR nonlinearity. Another
reason for trying to avoid the energy transfer process is

the strong noise amplification mechanism ("fanning"),
which is present in all the PR materials with an imagi-
nary Bn(q~, q2). We expect this effect to be very small in

our case, both for the above reason (very small Ed) and

because of the small cross section of interaction with

spontaneously scattered noise (see Ref. [6]). Recently
developed quadratic materials, that belong to the KTN
group [11],can be excellent candidates since they present
a very strong nonlinearity with externally applied electric
field, and inherently do not support the energy transfer
process.

In conclusion, we have presented a new type of soliton
which is based on the photorefractive nonlinearity, dis-

cussed the unique properties of this soliton, and con-
sidered the conditions necessary for observing it.
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