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We show that the metric and Berry's curvature for the ground states of N 2 supersymmetric a mod-

els can be computed exactly as one varies the Kahler structure. For the case of CP" these are related to
special solutions of affine Toda equations. This allows us to extract exact results. We find that the
ground-state metric is nonsingular as the size of the manifold shrinks to zero, suggesting that 2D quan-

tum field theory makes sense even beyond zero radius. Thus it seems that manifolds with zero size are
nonsingular as target spaces for string theory (even when they are not conformal}.

PACS numbers: 11.30.Pb, 11.10.Ef, 11.17.+y

N 2 supersymmetric quantum field theories (QFTs)
in two dimensions have been recently investigated exten-
sively (an important subset of them, conformal ones,
serve as stationary solutions to superstrings). These the-
ories have the important property of being essentially
characterized by simple topological data (chiral ring).
Using this simple topological formulation it is possible to
extract some exact results for the correlation functions of
these highly nontrivial QFTs in two dimensions.

In this Letter we discuss some exact nonperturbative
results for N 2 supersymmetric o models by applying
the results developed in [I]. Let us briefly recall the main
results in that paper. Consider a two-dimensional QFT
with N 2 supersymmetry. Let Q,+ and Q, label the
two supersymmetry charges (a denotes the chirality).
The ground states la) of the supersymmetric QFT are
characterized by

(where we take the space to be a circle of length I with
periodic boundary conditions). Operators p; which com-
mute with Q+,

are called chiral. The CPT conjugate operators p; com-
mute with Q and are called antichiral. There is a one-
to-one correspondence between the ground states and the
chiral operators (as can be seen by applying a chiral field
to a canonical ground state represented by l I), which is
always uniquely definable [I], and projecting it to the
canonical ground-state subsector). We can thus label the
ground states by the labels of chiral fields li),

Similarly we can use the antichiral operators to label the
same ground states, but in a different basis lj) (which is
the conjugate to (jl). The chiral fields form a commuta-
tive associative ring,

y;y, =C,yt, +[Q+,A].

We identify the action of p; on the chiral fields with the
matrix C; CJ. This matrix also represents the action of
p; on the ground states:

We can use the top components of P; and its conjugate to
perturb the action in a supersymmetric way,

bS=„d Hd zbt'p;+c. c.

As we perturb the action by changing t' the ground states
change. We introduce the connections

A; (jltI, lk)

and its conjugates, which are defined as a function of t;, t;
and act on the space of ground states. This connection
"measures" the way the ground-state subsector varies in

the full Hilbert space as we change the couplings [2]. It
is easy to see that as we change the ground-state basis A;
transforms as a gauge connection. Consider the convari-
ant derivatives

t); —A;, D; tI; —A; .

Let g denote the Hermitian metric in the ground state
subsector labeled by the chiral fields:

It is natural to define in addition a "topological" metric rl

which is symmetric and given by

There is a relation between g and g; the relation follows
from the fact that lt') is the CPT conjugate of li) and we

get

g 'rl(g 'rt)*=1.

By the above definition it simply follows that D;g
=D;g=0. The main result of [I] is to derive a set of
differential equations which g and A satisfy as functions

of couplings t;, t~. The equations which we will mainly
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use give us the curvature of A (which is the generaliza-
tion of the Berry's curvature to degenerate ground states
[2]) in terms of the commutator of the chiral and an-

tichiral rings:

[D;,DJ] —[C;,CJ], [D;,DJ] = [D;,DJ] =0.

Choosing a holomorphic gauge (A; =0) the first equation
can be rewritten (using covariant constancy of g) as

8, (g l);g ') - [C;,g(C, ) tg '] .

This is the main equation we shall use in this paper to
solve for g.

We now wish to apply this formalism to the supersym-
metric a model on a Kahler manifold M. In such a case
the ground states, and thus the chiral fields, are in one-
to-one correspondence with cohomology elements of M
[3]. Moreover ri may be identified with the intersection
of cohomology elements. The chiral rings, ignoring in-

stanton corrections, may be identified with the cohomolo-

gy ring of M. It turns out to be possible to find the exact
modification to the chiral ring due to instanton correc-
tions [3]. We then simply use (2) [and the constraint
(1)] to solve for g (and the ground-state curvature).

Instead of being general let us consider the case of the
supersymmetric CP" ' a model which has been studied

extensively in the literature. The classical cohomology
ring is generated by a single element x [of dimension

(1,1)] represented as a bilinear in fermions with the rela-

tion

x"=0

which is modified by instanton corrections simply to [3,4]

(3)

S= —lnP d zd ex+c.c. (4)

(For a full Landau-Ginzburg description of CP" ' see
[5].) Variation of p brings down —x/p, which is repre-

(reflecting the fact that 2n fermions can absorb the zero
modes in the presence of instanton) where —lnP is the
action for a holomorphic instanton (which wraps the
sphere once around the nontrivial two-cycle of CP" ').
Note that P need not be real as we can add a topological
term to the action which gives a phase modification only
in the presence of instantons. Since the real part of the
action is positive we have )P( ~ 1. The topological metric
rJJ=(x'x/) b;+1 „—~ in the natural bias corresponding
to Jx" ' =1. Since x represents the Kahler class, the top
component of it is related to the action itself. So we can
write the action as

sented in the basis of monomials x' by the matrix

1
CP

0 0 0 ~ 0 0
~ ~ o 0

0
0

0 0 0 ~ ~ ~ 0

P 0 0 . 0 0

Note that x' has (left, right) fermion number (i,i). But
fermion number is violated by multiples of 2n units due to
instanton efl'ects. So we still have a Z2„conservation of
chiral fermion number which in particular implies that g,

g,/ =(xl)x'),

is diagonal. Define

q; -lng, ;— In p~',
2i —n+1

~np I/n

Then Eq. (2) becomes

+ 4I+ I
—

Vi1 e ~iIi
—

V ii ~

()

with q„defined to be the same as qo. This equation is the
familiar affine A„~ Toda equation. Using (1) and the
form of ri we learn that q&+q„—~; 0 which reduces the
above equations to the C (BC ) Toda equation, where
n 2m(n 2m+1).

The metric g is a function of ~p( . This is due to the
fact that we need to have an equal number of instantons
and anti-instantons to get a nonzero contribution to g
(otherwise fermion zero modes will kill the contribution).
So the above equations become one dimensional. In other
words we are looking for radially symmetric solutions of
affine Toda equations. The only additional ingredient we

have to provide to completely solve the above equations is
the boundary condition. We do this near p-0, where the
radius of CP" ' goes to infinity, and we can use semiclas-
sical arguments to find the norm of the states by repre-
senting them as harmonic forms. Namely,

(x"~x")-2" ' '" x'n,
aJ

p1
( 21n~P))"

(n —I —r)! (s)

(here we used that the Kahler form k —ln~p)x and that
e k"= [I!/(n —

1
—p)!]k" ' '). However, this ignores

the loop corrections; it turns out that the solutions to the
Toda equation themselves know about loop corrections.
As is well known the only loop correction to the Kahler
class is the one-loop result [6] which makes the coupling
dynamical. (It is conceivable that there may be loop
corrections to the composite operators corresponding to
k'. ) The renormalization group (RG) flow in this case
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predicts that

—InP =c
~ lnp, (6)

where c~ =n is the first Chem class for CP" ' and p
defines the RG scale. This is reflected in our formalism

by the fact that if the size of the one-dimensional circle is
L instead of 1 the dimensionless quantity appearing in the
solution changes from P'i" LP'i"; in other words P'i"
has secretly the dimensions of mass (which could also be
inferred from the fact that x"=P and x is a fermion bi-
linear). By introducing a mass scale p we can thus write
the solution as a function of LpPoi", where Po is again di-
mensionless. This indeed tells us that Po fiows with RG
scale according to (6). However, it turns out that the
one-loop computation has a finite leftover piece which

gives a finite quantum correction to the effective coupling

P; in the minimal subtraction scheme we find the correc-
tion to be —InP —InP —c~y, where y is the Euler's
constant. So a more accurate semiclassical computation
which takes into account loop corrections should replace
(5) by

(x'Ix') - ' [2(—InIPI ny)]"—
(n —1 —k)!

The equations we get for the case of CP ' and CP turn
out to have been studied extensively [7,8]. After impos-

ing the reductions discussed above the equation for the
CP' case becomes the special case of the Painleve III
equation. Then the only consistent solutions which have
no pole as a function of P which have a logarithmic P
dependence can only be of the form (after changing back
to physical variables) [7], as P 0,

(xIx)=, [I+O(IPI'In'IPI)] .

Needless to say we can compute order by order the in-

stanton contributions by solving the diA'erential equation.
Indeed, for small P, (xIx) ' has an expansion of the
form [9]

(xIx) '- g IpI'"p„,
n 0

where p„ is a polynomial in [—InIPI —2y] of degree
2n+1. The coefficients of these polynomials can be com-
puted recursively from the differential equation. (For
n~3 these coefficients are listed in Ref. [9].) The
corrections clearly reflect the contribution of n instan-
ton-anti-instanton pairs to the metric (as they have a
prefactor of IPI "). It would be interesting to compare
the p„ from perturbations about the instanton back-
grounds. It is also very satisfactory that the form of the
loop corrections is predicted to be that given by the one-
loop term (including the Euler's constant) simply by re-
quiring nonsingularity of the solution as a function of P.
In fact the solution can be continued analytically even
past P =1 which corresponds to zero radius on the sphere
to P ~ 1 which has no obvious relation to the o model on

sphere. We should have expected that we will not en-
counter any singularities because according to the
renormalization-group IIow computation (6) in finite RG
time (i.e., finite mass scale) we come to have a zero ra-
dius, and if the theory is sensible at all we should be able
to choose any mass scale which would correspond to pass-
ing through zero radius. In fact the asymptotic structure
to the metric has also been worked out as P ~, and one
finds that

(x Ix) 1

(OIO)
—IPI

—
( ,

I I) „4exp( —8IPI'") + . .

The interpretation of this is as follows: The ring x =P
suggests that for large P the field configuration is dom-

inated near x + JP, which explains the leading term in

the above asymptotic behavior. The subleading exponen-
tial term suggests that there is tunneling between these
configurations by a soliton with mass 8IPI'i . The behav-
ior of this theory is very similar to that of the Landau-
Ginzburg (LG) theory which has the same ring, namely,
W=x /P —3x. The difference is that the behavior as

P 0 is different between the two and thus we get a
different solution of the Painleve III equation. The

P ~ behavior for the LG theory is the same as the
above, with the difference that the coefficient in front of
the exponential term is smaller by a factor of 2. In [1]
this coefficient was (heuristically) related to the number
of particles, and so this suggests that in the CP' model
we have t~ice as many particles as in the LG theory,
which is indeed the case, since CP is believed to have
[10] one doublet of SU(2) whereas the LG theory has
only one particle.

This story can be repeated exactly as before for CP,
where the relevant equation has been studied in [8] with

the result that (with s=3, g~,g2=0, g3=1 in Kitaev's
notation) we get a nonsingular solution, where the bound-

ary condition is again predicted to be the same as (5)
with the coefficient in front of y being n 3 the first
Chem class of CP . Again the asymptotic behavior is
worked out and one finds a similar behavior, this time
predicting the existence of particle of mass 643IPI 'i .
Moreover the strength of the soliton correction is 3 times
larger than the LG theory, W=x /P —4x, suggesting
that we have 3 times as many particles. This is indeed
the case, as CP is believed to have six particles (3 and
3) [10] where the LG theory is believed to have only 2
(which has been recently confirmed in [11]).

Needless to say we believe that similar behavior will
work for general CP" ', the difference being that there
the explicit solution to the (reduced) affine Toda equa-
tions has not been worked out. However, using physics
we can predict what would be a nonsingular solution to
the corresponding Toda equations. Moreover the result
in appendix B of [1] shows that from P ~ we can read
oA' the spectrum of masses of particles and this turns out
to be 4nsi (n rnn/) PIIi" as r runs from 1 to n —1, in
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agreement with [10]. One should in principle be able to
read off degeneracies as well by a careful study of the
strength of the soliton corrections to determine the degen-
eracy of particles as we did for CP ' and CP . We can re-
peat this game for any manifold for which we know the
quantum cohomology ring. This is in fact conjectured for
Grassmanians in [12] (see also [4]); a simple extension
should work for all Hermitian symmetric spaces. At any
rate we can for example read off the masases for the
6rassmanians.

Probably the most important aspect of this work is that
it suggests we can go beyond zero radii for supersymme-
trical cr models thus hinting that with or without confor-
mal symmetry 0 models somehow "resolve" singularities
of classical geometries. This was connected with the fact
that in finite RG time there is flow to the singular
geometry and completion of the moduli space requires
having something beyond the singular point which is what
seems to happen. It would be interesting to unravel the
geometry beyond zero radius. In some ways this is relat-
ed to the same phenomenon for Calabi-Yau manifolds
where the boundaries of moduli space are in some cases a
ftnite distance away from any point, and thus completion
of string theory suggests that we can go beyond them, as
has been suggested in [13]. Some aspects of our compu-
tations are similar to the recent one of Candelas et al.
[14] in which they computed instanton corrections to the
ground-state metric (Zamolodchikov metric) on a three-
fold quintic. In fact the equation they obtain can be re-
phrased as the standard A3 Toda equation [I] and so is

similar to the off-critical equation which happens to be an

one Toda equation (for example, for CP ).
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