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Multicanonical Ensemble: A New Approach to Simulate First-Order Phase Transitions
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Relying on the recently proposed multicanonical algorithm, we present a numerical simulation of the

first-order phase transition in the 2D 10-state Potts model on lattices up to sizes 100X100. It is demon-

strated that the new algorithm lacks an exponentially fast increase of the tunneling time between meta-

stable states as a function of the linear size L of the system. Instead, the tunneling time diverges approx-

imately proportional to L '. On our largest lattice we gain more than 2 orders of magnitude as com-

pared to a standard heat-bath algorithm. As a first physical application we report a high-precision com-

putation of the interfacial free energy per unit area.

PACS numbers: 05.50.+q, 11.15.Ha, 64.60.Fr, 75. 10.Hk

Critical slowing down is of crucial importance to com-
puter simulations of phase transitions. For second-order
phase transitions long autocorrelation times at criticality
cause severe restrictions on the maximum lattice size for
which one can obtain good statistics of thermodynamic
quantities. For a number of spin systems this critical
slowing down was overcome by the nonlocal cluster algo-
rithm of Swendsen and Wang [ll; for a recent review see
[2]. However, for first-order transition one encounters an
even worse and different problem of critical slowing
down. The interfacial free energy between disordered
and ordered states has a finite value on the critical point
for the infinite volume system. Configurations dominated

by the presence of the interface will be exponentially
suppressed by the Boltzmann factor in the canonical en-

semble. On finite lattices this leads then to an exponen-
tially fast suppression of the tunneling between metasta-
ble states of the system with increasing lattice size. To
overcome this critical slowing down eA'ect for first-order
transitions, we recently proposed a rrtulticanonical Monte
Carlo (MC) algorithm [3]. The multicanonical MC al-
gorithm is designed to enhance configurations which are
dominated by the presence of the interface and therefore
exponentially suppressed. In this way it is possible to
avoid the exponentially fast growing slowing down at the
first-order phase transition. In this paper we demonstrate
this in the case of our example: the 2D 10-state Potts
model.

The 2D 10-state Potts model [4] is defined by the parti-
tion function

Z(P) g exp(PS),
con tigurut ions

states has remained the hardest problem. The reason is

the pronounced double-peak structure of the sampled ac-
tion density Pt (S) in the canonical ensemble near the
critical point. The pseudocritical point PL is defined such
that both maxima are of equal height:

p l, max p (S I.max) p (S2,max) p2, max
L L L L L L (4)

1
FI = ——lnPL '".
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For a numerical calculation of FL it is now clear that any

algorithm which samples configurations with a probabili-

ty -Pt. (S) would slow down proportional to I/PL '". As
for large lattices PL '"-exp( —F'L '), it is expected
that an appropriately defined tunneling time rL will be-
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In addition we have imposed the normalization condition
1 =PL '"=PL '". Figure 1 depicts the action densities
for lattices with L =16, 24, 34, 50, 70, and 100 on a loga-
rithmic scale and we see that 4 orders of magnitude are
involved: PL '"/PL '"=5.1X10 for L =100. With our
conventions for Pl. (S) the interfacial free energy per unit
area F'=F' can now be defined [8] as the L ~ limit
of the quantity

q;, qj =0, . . . , 9. (3)
10-4

Recently there has been renewed interest in this model
[5-7]. It serves as an excellent laboratory for finite-size-
scaling (FSS) studies of temperature-driven strong first-
order phase transitions. To calculate the interfacial free
energy F' between the disordered and the (ten) ordered

1 s
FIG. l. Action density distributions PI (s) for lattices of size

L =16, 24, 34, 50, 70, and 100 on a logarithmic scale. The
values of the maxima have been normalized to 1.
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have as

I a +I. 'l. ~
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The parameters 8, and a can, in principle, be determined

by a fit to the measured tunneling times.
The multicanonical MC algorithm samples config-

urations with the weight

PMc. (S) PL fo Sk (S(S/(+ I

instead of sampling with the usual Boltzmann factor
PI (S) e-xp(pLS) corresponding to the canonical ensem-

ble. Here we partitioned the total action interval 0
~ S ~ 2V into k =0, . . . , N (N+ 1 odd) intervals It

k k+]=(SI., St ]. The idea of the multicanonical MC algo-
rithm is to choose intervals It and values of pl. and aL at
the pseudocritical point pt" in such a way that the result-

ing multicanonical action density Pt (S) has an approxi-
mately Aat behavior for values of the action in the inter-

~ l, max 2,max'I.val [SI',S&'
'

]; that is to say, configurations dominat-

ed by the interface are no longer exponentially suppressed
as they are in the metastable-unstable region of the
canonical ensemble. Physically this can be achieved by
choosing the p parameters pl" such that the system gets
heated when it is in the ordered state of the metastable
region, cooled when it is in the disordered state, and nei-

ther of these if it is in the unstable region. The parame-
ters pI hereby take the form pI =pL+Spt", where thek

coupling constant difference Bpt changes sign as a func-

tion of S and is responsible for the altered dynamics of
the model. The parameters aq" are adjusted in such a way
that PI (S) is a steady function of S.

In [3] we demonstrated, that when the double-peak dis-

tribution Pl. (S) can be approximated by a double Gauss-

ian, the multicanonical action density PL(S) can be

made arbitrarily Hat by driving a control parameter r & 1

towards 1. In this case we choose action values SI" with

S&0 0 SIN+ I 2 p S&l S ]™xSN S 2, max

interval [SL'""'",Sl. '") action values defined by the equa-

tion PI (SI")=r ' "St' "'" for k =I, . . . , N/2. An analog
procedure is adopted in the interval (SL '",SL '"]. Hav-

ing defined the action values Sk and corresponding inter-

vals Ik the setting

pI' for k =O, N/2, N,

pI = i pl'+In(r)/(Sl"+' —SL) for k = I, . . . , N/2 —I,
pf —ln(r)/(SI"+ —Sl ) for k =N/2+1, . . . , N —1,

(8)
and the recursion

a +L' =a t (+p Lpl +')S"+' al =0

defines the multicanonical ensemble. In accordance with

detailed balance, standard Metropolis and heat-bath up-

dating algorithms have been generalized to the multi-

canonical situation [3,9]. Finally we obtain the canonical
action density distribution PI (S) through a reweighting
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fig 2 MMulticanonical action density distribution P70(s) to-

gether with its reweighted distribution P7o(s).

TABLE l. The tunneling times r I as a function of the lattice
size L for the multicanonical MC algorithm (second row) and
the heat-bath algorithm (third row). For some lattice sizes we

display the results of several simulations, ~hose diAerence lies

in slightly diAerent coupling parameters.

I r I. (rnulticanonical) r I (heat bath)

12

16
24
34
50
50
70
70

100

1 147(10)
3 354(57)
8 375 (245)

23 763( I 32 l )
24932(1 064)
69492(6 383)
62 2 l 8 (5 560)

l 60 334(16252)

793(7)
776(9)

I 988 (23)
9 634 (408)

43923(3 151)
270 565 (63 222)

step similar to [10,11] from the multicanonical distribu-
tion Pl. (S):
PL(S) =e ' ' ' Pt (S) I'or SL &S~SL+'. (10)

As an example we show for our L =70 system in Fig. 2

the multicanonical action density distribution P7o(S) to-

gether with the reweighted distribution P7o(S). In prac-
tice the appropriate choice of the parameters in Eq. (7) is

obtained by making from the given systems a FSS predic-
tion of the density distribution Pl. (S) for the next larger
system. A second run may then be performed with opti-
mized parameters. It is our experience that the guess
works normally so well that the second run is barely an

improvement as compared with the first. On the smallest

systems standard MC simulation provides initial data.
Our statistics for this investigation was 4& 10 heat-bath
sweeps per run and lattice size. One sweep updates each
spin of the lattice once.

%e define the tunneling time rI as the average number

of sweeps needed to get from a configuration with action
S=SI' '" to a configuration with S=SI' "'" and back.
Kith our statistics of 4x10 sweeps per run the system
tunnels then in total Sx10 /rI times. Table I collects
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FIG. 3. Tunneling times for the multicanonical MC algo-

rithm and the heat-bath algorithm in a double-log scale. The

curves correspond to the fits in Eqs. (11) and (12). The dashed

part of the curve indicates the extrapolation to the L =100 lat-

tice for the heat-bath algorithm. On the 100 lattice the system

still tunnels 50 times between the metastable states during

4x 10~ sweeps, when the multicanonical simulation is used.

(i 2)

the measured tunneling times. For our smaller systems
we have also carried out standard heat-bath MC runs at
Pr'. and the associated tunneling times are also reported in

Table I. For the larger systems standard MC runs would

not tunnel often enough to allow for a reliable direct cal-
culation of their tunneling times. This is of course due to
the exponential slowing down of the standard MC simu-
lation. In Fig. 3 we display on a log-to-log scale the
divergence of the tunneling times r L for the multicanoni-
cal MC algorithm (circles) and the heat-bath algorithm
(triangles). There is clearly a diA'erent behavior of the
two algorithms involved. While for the multicanonical
MC algorithm the increase of the tunneling time is con-
sistent with a power law, the heat-bath algorithm displays
an exponentially fast growing tunneling time. Performing
a g fit we obtain the following fits:

rL(multicanonical) =0.73(3)L (il)
with g /nd, r =1.09,

r'(heat bath) =1.46L ' e+

with g /nd, r =2.2.

The quality of the fits as indicated by the 2 values (nd, r

denotes the number of degrees of freedom) is reasonable.
In case of the heat-bath algorithm we could not reliably

determine the errors from a three-parameter fit. The ra-

tio R = r L (heat bath)/r f (multicanonical) is a direct
measure for the relative efficiency of the two algorithms.

Using the fits we extrapolate its value to the L =100 sys-

tem and estimate a factor R =500 for this case. The
multicanonical algorithm approximately slows down like
—V with respect to the number of updates per degree
of freedom. This is only slightly worse than the optimal
performance —V which was estimated in [3] based on a
random-walk picture. For the heat-bath algorithm the
inefficiency of the algorithm prohibits a very accurate es-

timate of F' from the behavior of the tunneling time ac-
cording to Eq. (6). The fitted value in Eq. (11) is, how-

ever, close to the determination of the next paragraph
[Eq. (14)l.

Our multicanonical data allow the so far most precise
determination of the interfacial free energy per unit area
for the 2D 10-state Potts model. For this purpose we

determine maxima and minima of the Pr (S) distributions

by self-consistent straight line fits over suitable S ranges.
Together with the central values of their associated

ranges, our Fr'. values are collected in Table II. Perform-

ing the FSS fit according to [8]

FL =F'+c/L, (i 3)

we obtain consistent results for lattices of size L =16, 24,
34, 50, 70, and 100, as displayed in Fig. 4 (we have g /
nd, r =0.54). We estimate the infinite volume value of
the interfacial free energy per unit area to be

F' =0.097 81 + 0.00075 . (14)

This value may, however, depend weakly on the analyt-
ical form of the FSS fit [8] and even with our large lat-
tices we may still face additional systematic errors of a
similar order as the quoted statistical error. Future simu-
lations on even larger lattice sizes might therefore be of
interest.

In summary, we have introduced a multicanonical en-
semble for the numerical simulation of first-order phase

TABLE il. The pseudocritical couplings PL, locations of the maxima and minima of the ac-
tion density distribution and interfacial free energies, as determined from the multicanonical
distributions.

12
16
24
34
50
50
70
70

100
100

1.407 38 (09)
1.415 34(12)
1.421 00(08)
1.423 38(09)
1.42481(O6)
1.424 69(06)
1.425 36(06)
1.425 41 (05)
1.425 76(04)
1.425 77 (04)

116
216
523

1 072
2358
2357
4661
4660
9602
9577

g min
L

169
309
723

1 466
3 162
3 186
6257
6250

13060
13093

243
429
978

1 945
4192
4 190
8 190
8 178

16686
16711

FL

0.1071(06)
o. lo86(o7)
0.1058(08)
0.1039(13)
0.1027(11)
0.1006(1 0)
0.0983(20)
0.1007(12)
0.0986(18)
0.0994(15)
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FIG. 4. FSS estimate of the interfacial free energy F". Aver-

ages are used for those lattices for which we have two data sets.

An implementation of the multicanonical MC algo-
rithm for non-Abelian gauge theories is straightforward
and we think that future investigations of the QCD
deconfining phase transition will benefit from this. Be-
yond first-order phase transition, it may well be that mul-

ticanonical algorithms could be of use for other numerical
calculations in statistical mechanics, such as estimates Of

the free energy or spin-glass simulations.
Our simulations were performed on the SCRI cluster

of fast RISC work stations and the Convex C240 at the
University of Bielefeld. We would like to thank Nelson

Alves for collaboration in the early phase of this work.
One of us (T.N. ) appreciates discussions with A. M. Fer-
renberg and D. P. Landau. This research project was

partially funded by the National Science Foundation un-

der Grant No. INT-8922411 and by the Department of

Energy under Contract No. DE-FG05-87ER40319.

transitions, which eliminates an exponentially fast in-

crease of the tunneling time between the ordered and
disordered states in the critical region of the system. This
finding is achieved by replacing the usual equilibrium dy-
namics of the canonical ensemble, through a new equilib-
rium dynamics, where the ordered and disordered states
of the system get heated and cooled in a well controlled
way. Thus configurations dominated by the presence of
the interface are enhanced during the simulation.

The multicanonical MC algorithm gives a general
framework for the numerical studies of first-order phase
transitions in statistical mechanics as well as for field
theoretic models. From the numerical point of view the
interesting question will be what improvement factors can
be achieved as compared with standard algorithms for
certain models on certain lattice sizes. We expect the
answer to this question to be determined by the value of
the quantity Q=FL&L ', where the strength of the
first-order phase transition is indicated by the magnitude
of FL and the d is the dimensionality of the system. In
the case of the 2D 10-state Potts model we find at values
of Q-10 approximately an improvement of 2 to 3 orders
of magnitude, while at values of Q-I the improvement
is marginal.

~'"~On leave of absence from Department of Physics, The
Florida State University, Tallahassee, FL 32306.
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