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A new stochastic method for the direct computation of real-time Green's functions is proposed. The

inherent sign problem is circumvented by partitioning the path integration into two parts, one of which

involves conventional stochastic sampling, and the other explicit or analytical summation. Using this

method, the dynamics of the spin-boson model may be computed up to several tunneling periods. The
results reveal surprisingly complex relaxation behaviors near the coherent-incoherent boundary at low

temperatures.

PACS numbers: 05.30.—d, 02.50.+s, 73.40.Gk

In his space-time formulation of quantum mechanics,
Feynman demonstrated that Green's functions of quan-
tum systems may be represented by functional integrals
over space-time paths [1,2]. Since its conception, Feyn-
man's elegant approach has led to advances in many
branches of modern physics. But attempts to implement
Feynman s path integration ideas in direct numerical
simulations of real-time quantum dynamics have been far
less illustrious and much fewer [3-l l] compared to for-
mal theories. The numerical dilculties associated with

real-time path integrations are collectively called the
"sign problem,

" and they are the result of the oscillatory
nature of the integrand appearing in Feynman integrals.
Interestingly, Feynman himself was the first to recognize
the fundamental di%culties associated with the sign prob-
lem [2] long before the first numerical path integration
[3] was undertaken.

In this Letter, we propose a novel stochastic method to
directly sample the Feynman integral in real time. Nu-
merical evidence will show that this method partially cir-
cumvents the sign problem and is stable up to large
values of real time. We apply this new method to com-
pute real-time correlation functions of condensed phase
tunneling systems, in particular, the spin-boson model
[12], and observe surprisingly complex behaviors near the
coherent-incoherent boundary at low temperatures.

Consider the Green's function for a system whose gen-
eralized coordinate is x (x may be a continuous or dis-
crete variable),
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where D[x(t)]—=A g„.((,.(,)exp[iSS[x(t),y(t)]/'h}, A is

a normalization constant, and we have interchanged the
summation and the integration to avoid mathematical
ambiguities concerning the measure. Now Eq. (3b) may
serve as the basis for a Monte Carlo (MC) sampling after
the functional integral is broken up using the convention-
al Trotter formula. There is a key difference between Eq.
(3b) and the direct application of Eq. (I)—Eq. (3b) is
free of any sign problem This crucial obse.rvation is true
because Eq. (2) is true for all x(t), and therefore the in-

tegrand in Eq. (3b) is a constant of x(t), and so no sign
problem exists.

where S[x(t )] is the action. Let x(t ) be any path satis-

fying the boundary conditions x(t, ) =x, and x(tb) =xh.
In terms of x and fluctuations y,

intr(i)1/h g (t ) ib5tr(i). '(&))1/h (2)

where &S[x(t),y(t)) =S[x(t)] S[x(t—)]. Notice that

Eq. (2) is true for any x(t); therefore, summing over all

possible x(t) yields a quantity that is equal to a multiple

of G(x„,t„;xh, th), and when expressed in terms of this

sum, the Green's function becomes
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D'"'[x(t)] =A exp+ & "+O(C "+'') (4)
j= I

where (" =C ', g
"- =C' —C" /2, etc. , and accord-

ing to the linked cluster theorem, the exponent only con-
tains terms associated with connected diagrams [14].
The computational eAort required for the evaluation of
D " should therefore grow only linearly with system size
for models with short-ranged interactions. As it stands,

Eq. (4) is not a very good approximant to D for small n,
because the O(C "+' ) term is not small in general. In-

stead, we use the geometrical)y damped series D, "'
'(I+gj"=(e C ), where 0~ e~ I and A, =I

+g," (e'A "', which gives upon resummation

D,'"'[x(t)] =A, ' exp g e'&"', (s)

where the neglected terms are O(e"+'C "+' ). In the
limit e 0, D, " I and reduces Eq. (3h) hack to Eq.
(I), the exact expression for the path integral. But in this

limit, the sign problem renders the Monte Carlo sampling
unstable. In the other limit e 1, D, " D " and the

resulting inaccuracy is large. In practice, one aims for a

small but finite e between these two limits to achieve the
largest level of filtering while retaining reasonable accu-
racy.

First, D[x(t)] is itself a path sum, and its exact form is

in general unknown. A nested Monte Carlo scheme for
Eq. (3b), in which D[x(t)l is first evaluated by an inner

Monte Carlo sampling, would oAer no advantage because
this would merely shift the sign problem to a difterent
part of the calculation. In order for Eq. (3b) to be useful,
a reasonable analytical approximation for D[x(t)] has to
be formulated. Next, we explore some possibilities for
approximants to D[x(t)]. In this Letter, we focus spe-
cially on systems with a discrete Hilbert space [13],
where x(t) and y(t) are paths in state space. Let each
x(t) be parametrized on a discrete time line from 0 to t

at P+ I grid points separated by t/P, where eventually
P ~. For any x(t), a fluctuation is generated by

displacing the states at any number of internal grid points
to new states, and all fluctuations contribute to D[x(t)].
The contributions to D[x(t)] can be grouped by order,
where fluctuations differing from x(t) at one grid point
are called first order, those differing from x(t) at two

grid points are called second order, etc. Except for
a few trivially solvable cases, summing over al) fluctua-

tions is clearly impossible. The nth-order approximant
D " [x(t)] neglects fluctuations of order n+ I or higher:
D " [x(t)] =A '(I++,"=)C "), where C" is the con-

tribution due to jth-order fluctuations, and 3 =1
++I'=)A ', where A " is the number of elements in the
set of jth-order fluctuations. In practice, it is feasible to

employ only a small number of low-order terms. This

suggests a resummation to approximately account for the

missing terms,

Several features distinguish the current method from
other recent approaches to real-time path integrations
[4,7-9, 11]. All other approaches treat extended systems
only [4,7-9], which immediately excludes a large and im-

portant class of discrete quantum systems. Furthermore,
these methods are most useful when the system possesses
one or more "classical" stationary paths. This reliance
precludes treatment of many quantum processes which
have no classical analogs, such as tunneling. These limi-

tations may be partially circumvented [11] by first using
a continuum transformation to turn discrete systems into
extended ones, and then extending the space of integra-
tion to include complex-valued space-time paths in order
to capture nonclassical stationary trajectories. The
present method, however, does not succumb to any of
these limitations of the former methods because its for-
mulation [cf. Eqs. (3)] applies equally well to both e.x-
tended and discrete systems and therefore provides a

unified framework for treating both classes of quantum
processes on the same footing.

The proposed method will first be illustrated for a
two-state tunneling system with the Hamiltonian Ho
= —hho, /2, where o, is the Pauli spin matrix and d, is

the tunnel splitting. Notice that this system evolves pure-

ly by tunneling and its dynamics exhibits perfect quan-
tum coherence. Its Hilbert space has dimension 2 and
the basis vectors [(T] are the eigenvectors of o . The-
Green's function G(o, 0;o', t) =(o~e ' ~o') is given by

a path integral which is isomorphic to a 1D Ising model
with complex-valued exchange interaction after the con-
ventional Trotter breakup [6]. First, we examine the re-

sults of direct Monte Carlo sampling without filtering.
The diagonal element of the Green's function is

N

G( Oa; , o)r=i cosh(xri/2)(exP(J" g rr rr sr
j =

l &[~l

where the brackets denote an average over II [a]
=expJ'gj=) (T, a;~), JV is the number of discretization
points, and periodic boundary condition applies; J'
= ——,

' Intanh(Kt/N), and J"= —tr/4. Notice that with

these definitions for J' and J', Eq. (6) is exact to all or-

ders of N. Comparing Eq. (6) to the trivial analytical
solution G(cr, O;o, t ) =cos(t)ht/2), one observes that
(expiJ go, a, +))u would vanish exponentially with

(or with JV if t/N is kept fixed), and the average would be
lost in the noise if a direct Monte Carlo evaluation of G
was performed via Eq. (6). Numerical results in Fig.
I (a), which shows P(t) =—I(G(o,O;o, t ) (

2, reveal this insta-

bility of the direct method, where the statistical errors at
long times diverge according to our expectation. I nterest-

ingly, Fig. 1(a) shows that the sign problem is not the

only pathology of the direct method. Even for short-time
data points with small statistical errors, the direct method

yields erroneous results. The origin of this error can be

traced back to the Monte Carlo evaluation of Eq. (6),
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which is valid only if the quantity to be averaged is smooth on the length scale of the weight function. For all real-time

path integrations, this quantity is nonpositive definite and highly oscillatory, in violation of the smoothness requirement.
Now we demonstrate how the proposed method may be used to circumvent the sign problem. Inserting the approxi-

mate D, ")[x(t)] into both the numerator and denominator in Eq. (6),

G( aD; as)=i i co hs(d /S2)(expiJ
' g a;a;+, D, " (D, " )w.

8'
(7)

Notice in E . (7) that the filtering functions for the

numerator D," and the denominator D, " are not identi-

cal [15]. Numerical results using Eq. (7) with the same

number of MC passes as those in Fig. 1(a) are shown in

1(b). For these calculations, a first-order (n = I ) approx-
imant to D was used, with a=0.015, computed by explic-

itly summing over all first-order fluctuations. Figure 1(b)
shows that the results do not suffer from the sign problem

and they are in excellent agreement with the exact results

up to more than two tunneling periods. In addition to el-

iminating the large statistical errors, the systematic errors
are also eliminated, because the filtering function D
significantly damps the oscillations.

Now we apply the proposed method to a highly non-

trivial problem —the computation of real-time correlation
functions of condensed phase tunneling systems —for

which we embed the two-state tunneling system described

above in a bosonic bath [161, with the total Hamiltonian

H =Ho++& (pg/2mz+mjtotxj /2+cjxzcr ), where-cz is

the strength of the coupling to the jth oscillator. This
so-called spin-boson model has been the subject of exten-

sive studies and is a model for macroscopic quantum

to

~ ~ ~
t t~~ ~~

I

FIG. l. The probability of return P(t) for a bare two-state
tunneling system from Monte Carlo sampling. The number of
discretization N for each t is given by t)st/2N =O. 1333. 2x 10
MC samples were used to obtain results in the leftmost region
indicated by the dotted line, 2x10' in the rniddle, and l x l0 in

the rightmost region. Solid curves are exact solutions. Vertical
bars indicate errors of I standard deviation. (a) Results from
the direct method, Eq. (6); (b) results using the proposed
method, Eq. (7). [Note the change in scale I'rom (a) to (b).l

coherence [17],Josephson junctions [12], and light parti-
cle transport in crystals [18]. Previous functional-
integral theories employing the noninteracting blip ap-
proximation have predicted extremely rich behaviors for
the spin-boson model with an Ohmic bath [12], including
a transition from coherent to incoherent relaxation at
finite temperatures [19],power-law tails in the relaxation
at intermediate coupling strength a [20,21], and nonex-

ponential temperature dependence of the incoherent re-
laxation rate [22]. The noninteracting blip approxima-
tion has yielded reliable results for all but a tiny region in

the parameter space. Interestingly, this small region,
& a & I at low temperatures, for which the nonin-

teracting blip approximation breaks down, is also one of
the most intriguing because it is in this region that the
spin-boson model is "equivalent" to the Kondo problem
[23-25] (spin- —. system interacting with a fermionic
bath). We present here results of the first numerical
simulations for this region, up to two tunneling periods
[26].

Figure 2(a) shows Monte Carlo results for the spin-

correlation function C(t) =Re[Tre ~ o cr (t)]/T-re-
for a=0.64 with an Ohmic bath cutoff frequency tt), .

=1.255 [27] at several temperatures. The results were

obtained by first expanding the Green's functions using
the Trotter formula similar to that in Eq. (6) [6,28]. The
harmonic bath was then integrated out, dressing the spin

path with nonlocal influence functionals, and the Monte
Carlo averages were performed using D, with t. =0.030.
The same data are replotted in Fig. 2(b) on a semilog
scale. The results show that at high temperature, the sys-

tem relaxes purely exponentially, in agreement with the
"golden rule" [12]. At a lower temperature lcT+)fath(tIt/

tt), .)' ' ', the relaxation proceeds via a fast initial (un-
derdeveloped) exponential decay, followed by a much
slower second exponential decay. This is in disagreement
with the prediction of the noninteracting blip approxima-
tion that the long-time incoherent relaxation in this re-
gion follows a power law -t ' [20]. In addition, at
even lower temperatures, the relaxation becomes oscilla-
tory, with the correlation function approaching zero

seemingly from below in the long-time limit. Again, this
observation is in contrast with the prediction of the nonin-

teracting blip approximation that the relaxation for
a) —' is purely incoherent [19]. On the other hand, our
result lends support to recent evidence which suggests
that initial system preparation with Boltzmann weighting
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may significantly alter the conclusions of the noninteract-
ing blip approximation at ]ow temperatures [18].
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