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From Isotropic to Anisotropic Superconductors: A Scaling Approach
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We present a new scaling approach which allows one to map results obtained for isotropic supercon-
ductors to anisotropic materials in a simple and direct way. The scaling rules are obtained on the level of
Ginzburg-Landau- or London-type equations and applied directly to the desired phenomenological
quantity. We illustrate the method by calculating the elasticity moduli, the depinning and melting tem-
peratures, the critical current densities, and the activation barriers for classical and quantum creep in
anisotropic superconductors for an arbitrary angle between the magnetic field and the axes of anisotropy.

PACS numbers: 74.60.Ge, 74.20.De, 74.60.Jg

The discovery of high-temperature superconductivity
has renewed the interest in the phenomenology of type-I1
superconductors. Among the recent novel results are the
proposed new thermodynamic phases such as the vortex
glass [1] or different kinds of vortex liquids [2], the
influence of thermal fluctuations leading to thermal de-
pinning [3] and vortex lattice melting [2,4,5], the deter-
mination of the elastic properties of a vortex lattice in an-
isotropic superconductors [4,6,7], and the investigation of
pinning and creep, both classical [8,9] and quantum
[10,11]. Many of these features have been studied for the
case where the magnetic field is aligned with the ¢ axis
[2,4] or with the main axes of the anisotropic material
[7], others have only been investigated for isotropic su-
perconductors [1,3,5,8,10]. The traditional way to in-
corporate anisotropy into the phenomenological descrip-
tion of superconductivity is to introduce an anisotropic
effective mass tensor into the Ginzburg-Landau or Lon-

g=Ja

where ¥(r) is the order parameter, A is the vector poten-
tial, and B=VXxA is the microscopic magnetic field. The
external field H is chosen to lie in the y-z plane and en-
closes an angle 9 with the y axis. For the sake of simpli-
city and because the oxide superconductors are within
high accuracy uniaxial materials, we choose my, =m, =m,
m. =M, and denote the mass anisotropy ratio by s{=m/
M < 1. In order to include effects of pinning [12,13] we
introduce scalar disorder in the GL coefficient a, a =ag
+68a(r) with (sa)=0, and (Sa(r)éa(r'))=y6(r—r'),
describing short-range disorder in the transition tempera-
ture 7.

Several years ago, Klemm and Clem [14] introduced a
transformation which mapped Eq. (1) to an isotropic
form. Their approach allows one to isotropize all terms
in the Gibbs energy; however, the transformation is rath-
er complicated and limited to unidirectional fields. Ko-
gan [15] then pointed out that the magnetic field around
a vortex also involves transverse components which the
scaling approach fails to take into account. Later, Kogan
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don equations. In the conventional approach one then re-
peats all the calculations which usually have been done
for the isotropic case before. As a result of the appear-
ance of additional parameters and the breaking of spheri-
cal symmetry, the corresponding analysis becomes very
tedious and thus only few results are known for the gen-
eral anisotropic case including arbitrary field direction.
In this Letter we present a new scaling approach which
provides simple and direct access to the most general an-
isotropic result by rescaling the anisotropic problem to a
corresponding isotropic one on the initial level of
Ginzburg-Landau (GL) or London equations. The scal-
ing rules extracted out of this mapping are then used to
generalize the isotropic results to the anisotropic situation
with essentially no effort. The two approaches are
schematically illustrated in Fig. 1.

To start with, let us consider the Gibbs free energy for
an anisotropic superconductor

2
B> _H'B
‘l’ + - - R I
8 4r } o
Characteristic A scaling Q
Quantity approach A
2 5
c o:
H g8
g 8:
lin :
Basic Equations Isotropic 4_“';1._:_ Anisotropic

(GL or London)

FIG. |. Schematic illustration of the conventional and of the
new scaling approach to obtain physical results for anisotropic
superconductors. In the conventional approach one starts from
the anisotropic GL or London theory and repeats the calcula-
tions done before for the isotropic case. In the new scaling ap-
proach we use the scaling rules obtained on the level of GL or
London equations and directly transform the isotropic results to
anisotropic superconductors.
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and Clem [16] and Hao and Clem [17] used a scaling
transformation in their calculation of the reversible mag-
netization and the torque. In particular, they showed
that the scaling approach is valid for large x=A/¢ and
large magnetic fields (A and & denote the planar London
penetration depth and the coherence length). However, it
is important to realize that for strong type-II supercon-
ductors with x>> 1, fluctuations in the magnetic field can
be neglected altogether in most applications. This idea
allows us to use the scaling approach in a much wider
context than considered before.

In (1) the anisotropy enters only in the gauge-invariant
gradient term and a simple rescaling of the coordinate
axes

X=X, y=p, z=¢7 2)
together with a scaling of the vector potential, A

(AX,A,,A /e), will render this_term isotropic. The
magnetic field is rescaled to B=(B,/¢, By/e,B‘) and the
last two terms in (1) describing the magnetic-field energy
are transformed to

aed @

In short, we have removed the anisotropy from the gra-
dient term but reintroduced it in the magnetic energy
term. In general it is not possible to isotropize both terms
in the Gibbs energy simultaneously. However, depending
on the physical question addressed, we can neglect fluc-
tuations in the magnetic field. For example, the problems
of vortex pinning or of vortex lattice melting involve the
coherence length & or the intervortex distance a =(dq
/B)'"? as their natural length scales. The latter are small
compared with the scale of fluctuations of the magnetic
field A, if the superconductor is strongly type II or for
large enough magnetic fields with a <A, respectively. In
such situations the magnetic field is uniform on the natu-
ral length scale of the problem and we can adopt a
mean-field decoupling scheme, where we first minimize
the magnetic-field energy ¢, with respect to B and then
insert the resulting uniform field back into the free ener-
gy. More rigorously, let us consider the case x— o or,
equivalently, charge e — 0. The coupling between the or-
der parameter ¥ and the gauge field A is given by the
gradient term |[V/i —(2e/c)Al¥|? and vanishes in the
limit e— 0. The external magnetic field then merely
fixes the average density of vortices. Hence our approach
is exact for the case of an uncharged superfluid.

_ Minimizing the magnetic-field energy ¢, we obtain
B=(¢H,,cH,,H.), corresponding to B=H in the origi-
nal system. Thus in our rescaled system the magnetic
field is reduced to B =¢,B, & =¢2cos29+sin29, as com-
pared with the field in the original system. Next, let us
transform energy and temperature: Since the volume
scales as ¥ =¢V, the energy scales as § =¢9, and for the
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temperature determining the strength of thermal fluctua-
tions we obtain the rule 7 =¢T. Finally, we transform
the disorder da(r): In the isotropized system the correla-
tor reads (8a(f)da(f')) = (y/e)3( —F'), thus the disorder
strength y scales as y=¢y. A second type of disorder is
generated by the spatial variation of the mean free path
[12,13], which can be described by a variation of the
effective masses m(r) and M (r). For a layered supercon-
ductor, the disorder in m and M is due to disorder within
the conducting plane and between adjacent planes, re-
spectively, and thus in general the two need not be the
same after rescaling. The difference between these two
kinds of disorder is only relevant in the small angle re-
gime |9| <e¢, since for angles bigger than & the vortices
are redirected mainly along the ¢ axis after rescaling and
thus disorder in M can be neglected. Except for this
small-angle regime, the disorder in the mean free path
can be treated as scalar and therefore transforms in the
same manner as the disorder in 7.

We are now ready to set up a general scaling rule:
Consider a uniaxially anisotropic superconductor (axis
parallel to z) characterized by the planar coherence
length & and London penetration depth A, the anisotropy
¢, and the scalar disorder strength y, in an applied mag-
netic field H enclosing an angle ® with the x-y plane, at a
temperature 7. Let Q be the desired quantity for which
the isotropic result Q is known. Then we obtain Q for the
anisotropic superconductor by the scaling rule

OW,H,T,E e y) =sQQ(£,,H,T/e,§,A,y/s). (4)

Typical scaling factors are sp =¢ for volume, energy,
temperature, and action, and sz =1/¢; for magnetic field.
The scaling rule (4) is the main result of our paper.

In the remainder of the paper we present a few illustra-
tive examples of how to make use of the scaling formal-
ism. Let us start with the elasticity coefficients for a sin-
gle vortex. The elastic energy of a single vortex can be
written as

Fa=f "1} 6/ 0) @0+ o 9) ()]
where we have introduced the rotated system with its z'
axis directed along the field and x'=x. Transforming the
in-plane tilt energy to the isotropic system we obtain the
relation &' (9)(Su,)¥/6z' =€/ (5ii)%/87'. Since A is in-
variant, & =g =(dy/47r)%. Furthermore, &i,/6u, =1
and 8z'/8Z' =¢/e,, since a longitudinal length scales as
Iy =¢l)/e,. The final expression is & (9) =ge*/ey, in
agreement with the result of the conventional approach
[11]. When transforming the out-of-plane tilt energy we
should take care about the change of angles due to
the scale transformation: The transformed vectors d&u
=5u,(0, —sind,cosd/¢) and 6z’ =5z'(0,cosd,sind/e) are
no longer orthogonal. Orthogonalizing, we obtain
e (9)(Suy)?/62' =8| 61 x 67'|%/6" and the final ex-
pressxon is &*(9) =ge?/e;, in agreement with Ref. [11].
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In addition, we obtain the scaling_rule for transverse
lengths (/, LB,x and I, LB,x), I, =&l,.

Next, we discuss the elastic moduli of flux lattices in
the limit of strong dispersion (kA > 1), where our formal-
ism can be applied. We have to find the two tilt moduli
[7] Cla and caa, the three compression moduli (18] ¢f),
c||, and c|i*, and the two shear moduli [6] ¢ (easy) and
cée (hard). Transformmg the tilt energy density we find
the relation cls(k)k3u2=¢44(k)ki2 and using the scal-
ing rules for longitudinal lengths and magnetic fields we
obtain cis (k') =¢B*/4n\%k>. Finally, we express k by k'
and the in-plane tilt modulus becomes

. B2 g
L) =75

1
k +elk+ ek +201 —&2)sinv cosvk, k.

with €9=¢g,/7—5. In the limits =0 and 9 =n/2 we can
compare our result with Ref. [7] and find agreement.
The other elastic moduli are found in a similar way and
we quote the results here: cii(k') =cis(k')/e7, where the
scaling rule for transverse lengths has been used, ¢}, (k')
=cii(k) =cli* (k') =cis (k') (6s/) 2, and cde =cos(B)e;,
cé6 =ce6(B)/e5, With cec(B) =®oB/(871)2, in agreement
with Ref. [6].

In our next example we generalize the isotropic results
for thermal depinning [3] and melting [2,4,5] to aniso-
tropic superconductors and arbitrary angles ¢ of the mag-
netic field. The thermal depinning temperature Tgp is
defined by the condition [3] {u2)y,=¢&2 and given by the
expression Tap=4£0E2(B/®g) 2. Here (u2y is the
mean-squared displacement due to thermal fluctuations.
Using our scaling rule (4) with s7 =¢ we obtain the de-
pinning temperature in an anisotropic superconductor,

Tap(9) =degot(eyB/Dy) 2. (5)

In order to obtain the melting temperature we may use
the Lindemann criterion (u 2y, =(c a)? with ¢, ~0.1 the
Lindemann number. Again using (4) we obtain the gen-
eralized melting temperature

T, (9) =degoct(do/e,B) 2, (6)

which agrees with the result of Ref. [4] for the special
case 9 =x/2. The results (5) and (6) show that the re-
gion where the vortex lattice is thermally depinned but
not yet melted grows as the field is tilted away from the ¢
axis. Note that in this region the critical current density
is strongly temperature dependent [3].

Let us now turn to the problem of pinning and creep.
Here we limit ourselves to the case of single-vortex
weak-collective pinning, which seems to describe well the
situation in the oxide superconductors at low enough tem-
peratures (7530 K for Y-Ba-Cu-O) and magnetic fields
(H<1 T for Y-Ba-Cu-O) [19]. For isotropic supercon-
ductors it has been found [8,10,13] that a segment of

length L.==(&£%/7) ' is collectively pinned, leading to a
pinning potential U.=(yL.)'2&, an effective action SET
=(h/e)2(&/pn) Golj-)'"? (limit of strong damping), and
a critical current density j.=jo(&/L.)?, with jo~c®o/
A2 denoting the depairing current density. Finally, the
condition for single-vortex pinning is given by the relation
L. < a which results from the condition that the interac-
tion between neighboring vortices be smaller than be-
tween a vortex and the pinning potential. Using our scal-
ing rule (4) we obtain the following results for the aniso-
tropic superconductor: L.(9) =L¢/e,, where LE=(e3&%%/
y) B =430 is the collective pinning length for Hllc.
Here we have used the transformation rule for longitudi-
nal lengths and for the disorder coefficient y. L/*° denotes
the collective pinning length of an equivalent isotropic
material with identical parameters A, &, and y. The pin-
ning potential becomes US =¢*3UX°, independent of the
angle 9. Similarly, the action becomes SE™¢ =g*3ggMis0
again independent of ¢. In the anisotropic material we
can define two critlcal current dcnsities the in-plane criti-
cal current density jllix, and j*lly’, the out-of-plane criti-
cal current density. The crmcal current density scales
like a length and we obtain j'=jS=¢7%3j indepen-
dent of 9, and j* (9) =¢,j¢. Finally, the condmon for sin-
gle vortex pinning transforms to LS < ae/e)’?, or using the
relation LE=e£(jo/j) "% H < (ji/jo)H,(8). All these
results agree with those obtained following the conven-
tional approach [11] but involve essentially no calcula-
tions at all. For large fields or small current densities
<Kt (9) the response of the system is determined by
(small) vortex bundles [3,8,10]. We then can use our
scaling approach as long as the transverse size R, of the
bundle is smaller than the London penetration depth 2,
or, more precisely, R, <A. The results for this regime
will be published elscwhere.

In anisotropic materials an additional degree of free-
dom is the angle ¢ between the magnetic-field direction
and the superconducting planes. Here our scaling rule
(4) predicts the angular dependence of physical quanti-
ties to be expected due to the anisotropy of the material.
For example, the scaling behavior of the in-plane resis-
tivity as measured by Iye, Nakamura, and Tamegai [20]
and interpreted by Kes et al. [21] finds a natural explana-
tion within our new scaling approach: The scaling factor
for the in-plane resistivity is s,=1 and using (4) we ob-
tain p(9,B) =p(e;B)=p(sind B), without making any
special assumptions about a possible breakdown of the
concept of a flux-line lattice in layered superconductors
[21]. In addition, for ¥ > ¢, after rescaling, the magnetic
field is mainly directed along the ¢ axis and thus the
Lorentz force is essentially independent of the direction
of the current in the plane. Going back to the original
system, one then expects that the in-plane resistivity
should be independent of the angle between the magnetic
field and the current [20] in the regime ¥ > &. Similarly,
the magnetization experiments by Gyorgy et al. [22] find
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a natural explanation within our scaling approach:
Evaluating the critical current densities for in-plane and
out-of-plane current flow, they find that j'=;¢ and
Jj&r(®)=sinv j¢, which is the prediction of the scaling
theory.

Regarding the regime of applicability we wish to point
out that, in spite of starting from a GL-type description,
our scaling approach is not limited to the regime near T..
In fact, our scaling rules can also be obtained by starting
from the London equations, which are valid at any tem-
perature. The scaling rules for the disorder will not be
changed as long as the anisotropy in the penetration
depths and in the core size remain the same. Also, our
scaling approach can be used for the case of layered su-
perconductors as long as the discreteness of the structure
is not important. The crossover between quasi-2D and
3D anisotropic behavior depends on the physical quantity
of interest; however, the regime where the anisotropic
description is valid is usually large [11,23].

In summary, we have presented a new scaling approach
for obtaining physical results in anisotropic superconduc-
tors in a simple and direct way. Our scaling rule (4)
shows that the effect of anisotropy is to reduce the field
component in the superconducting planes and to enhance
the effective strength of the pinning, both favorable
effects in view of technological applications of the new
materials. On the other hand, the anisotropy increases
the temperature of thermal fluctuations, favoring phe-
nomena such as thermal depinning and melting of the
vortex lattice, effects which are scientifically very in-
teresting but rather undesired in view of applications.
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