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Hidden Order in a Frustrated System: Properties of the Heisenberg Kagome Antiferromagnet
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We show that the classical Heisenberg antiferromagnet on a Kagome lattice is an example of a spin
nematic. By calculating the eAects of thermal Auctuations around ground states, and by Monte Carlo
simulations, we find entropically driven, local spin-nematic order at low temperature T with a correlation
length which is divergent in the limit T 0. Dynamical correlations are also studied, within the har-
monic approximation, in the nematically ordered states.

PACS numbers: 75. 10.3m, 75.30.—m, 75.50.Ee

Frustrated antiferromagnets are interesting particular-
ly because of the scope they oN'er for novel low-tem-
perature states, which may be magnetically disordered
[1,2] or have only unconventional (non-Neel) order
[3-51. One example, the Heisenberg antiferromagnet on

a Kagome lattice, has been proposed as a model for two
experimental systems: He adsorbed on graphite (with
spin S= —,

' ) [6], and the insulating, layered compound
SrCrsGa40i9 (with s = —'. ) [7,8].

In this Letter we discuss the properties of the Heisen-
berg Kagome antiferromagnet in the classical limit
(S ~), by low-temperature expansion, by Monte Carlo
simulation, and via spin-wave theory. We find that the
system displays "order from disorder" [9], the order be-

ing spin nematic .[4,10,11]. Specifically, thermal fluctua-
tions select, from the vicinity of the highly degenerate
classical ground states, configurations in which spins are
coplanar. We show that such nematic states support
"disguised" spin waves, which have properties consistent
with recent inelastic neutron scattering measurements on
SrCrqGa40 f 9.

Our approach is complementary to recent treatments
of the model with S —,

' [12], and to the quantum-fluid
description of Chandra and Coleman [4]. An interesting
difl'erence between our results (for S=ee) and those (for
S finite) of the latter authors is in the symmetry of the
nematic state. Using the classification of Andreev and
Grishchuk [10],we find (for T 0) n-type as opposed to
[4] p-type order.

I n brief, one expects the dominant classical, low-
temperature configurations to be close to whichever
ground states have the softest fluctuations [13,14]. The
ground states in which spins are coplanar (so defining a
nematic axis perpendicular to the plane) are unique in

having an entire branch of soft modes. Consequently, the
nematie correlation length is divergent in the low-
temperature limit.

As a starting point, we need an understanding of the
classical ground states of the Heisenberg Kagome antifer-
romagnet. A picture can be built up as follows, with the

Hamiltonian
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FIG. 1. Temperature dependence of specific heat. Upper in-
set: Enlargement of low-T region. Lower inset: Kagome lat-
tice. )08, 432, and 768 site systems: N, 0, and O.

where S; is a classical, three-component unit vector, and
the sum runs over pairs of sites on the Kagome lattice
(Fig. 1). The energy is minimized by any configuration
for which the total spin of each elementary triangle on
the lattice is zero. In such states, the spins of a given tri-
angle lie in one plane, forming a rigid unit in spin space;
the degeneracy stems from the many ways of fitting these
units together. Consider first the subset of ground states
having all spins coplanar. Each such planar state is

highly constrained, in the sense that only three distinct
spin orientations occur, but the subset as a whole retains
a large degeneracy: It has an extensive entropy, and
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there is evidence [8] for power-law decay with distance of
the correlation function (So Sg) averaged over the sub-
set. Nonp/anar states can be generated by continuous
distortions of a planar state, without crossing energy bar-
riers. To do this, line defects are introduced into the pla-
nar state by (i) finding a closed line of adjacent sites
which has, as its nearest neighbors oA' the line, only spins
of one orientation, S, and (ii) rotating rigidly all spins on
the line about the axis defined by S. In fact [15], given
suitable boundary conditions (spins in surface triangles
all coplanar), all ground states can be generated by re-

peated introduction of defects into the diAerent parent
planar states.

The set of all ground states is disordered, in the sense

that a zero-temperature average would presumably leave

any correlation function short ranged. At low tempera-
ture T, however, the entropy of fluctuations selects
configurations which are locally close to planar ground

states, with a nematic correlation length that is divergent

for T-- 0. Behavior at T=O is hence discontinuous,
which is the essence of Villain's "order from disorder"

[9,13,14]. To show this, we start by calculating, in the

harmonic approximation, the energy cost of small distor-

tions from an arbitrary planar ground state. The result is

remarkable in two ways. First, in a suitable coordinate

system, it is identical for all planar states. That is, har-

monic fluctuations around these states are oblivious to the

underlying order or lack of order, and do not select be-

tween diA'erent planar configurations. Second, there is an

entire branch of zero modes. For this branch, energy is

independent of displacement to second order, at all wave

vectors. Anharmonic forces, discussed below, stabilize

the zero modes.
Distortions about nonplanar ground states are much

harder to characterize, but it is fortunately possible to

prove one essential fact responsible for nematic order:
No nonplanar state has as many zero modes as the planar

states. Details will be presented elsewhere [15].
To discuss fluctuations around planar states, a suitable

coordinate system is one oriented with respect to local

spin directions. At each site i we choose right-handed

axes in spin space with i; parallel to S; in the particular

ground state, and all y; perpendicular to the ground-state

spin plane and mutually parallel. With spin orientations

parametrized by S; = (e;",e, 1
—a; ), with a; determined

from ~S; ~
=1, the Hamiltonian [Eq. (1)] becomes H

=Ho++„~ 2H„, where H„—O(e"). Specifically,

H =(J/2)[(36; —M; )e e'+2M; e e'], (2)

using the summation convention and defining the matrix
M as M;;=1, M;~ =

& if i,j are nearest-neighbor sites,
and Mj 0, otherwise. Independence of H2 from the
ground-state directions S; is explicit in Eq. (2). The ei-
genvalues of M, Al(q), form three branches,

I =0, +, —:Ao(q) =0 and A. + (q) = —' (1+41 —3 );
[1 cos(Rlg J )cos(xgp)cos(ll'[tg ( gi] )]

H4=(J/16) g (e —e,' )
&i,j )

(4)

In calculations of the partition function Z or correlation
functions, integration over 4;"] leaves a purely quartic
efTective potential H4 for the zero modes. Each such
mode contributes a factor of T ' to Z, while quadratic
modes contribute T' -', so that behavior is dominated at
low T by fluctuations around ground states with the larg-
est number of zero modes: the planar states. In particu-
lar, the zero modes stabilize the planar ground states
against the introduction of line defects, which, when

present, remove one zero mode for every hexagon of the

Kagorne lattice they share a site with. The coeScients
appearing in H4 are diA'erent for each planar state and,
as a result, the T 0 Boltzmann probabilities of these

states are not all the same. A consequence of this could

be additional (e.g. , Neel) order.
Our treatment leads to two predictions that can be

checked against Monte Carlo simulations. First, the

specific heat Cp is sensitive to the presence of zero modes,

since, while a quadratic mode contributes —, I.BT to the

internal energy, a zero mode contributes only 4 k&T.
Hence we expect C~ =

—,'; kq per spin. Second, and more

directly, appropriate correlation functions should reveal

nematic short-range order. To specify the spin plane of
each triangle a, we introduce normals defined by

n, = (2/3 J3)(S ~
x Sz+ S2 x S,+S3 x S ) ),

where S], S2, and S~ are the spins at successive vertices of
the triangle a; in any ground state, ~n„~ = l. Nematic or-

where q =q[G]+q262 with G] and G~ basis vectors for
the reciprocal lattice. The zero modes correspond to dis-
tortions out of the ground-state spin plane; a physically
transparent, complete, but nonorthogonal set of eigenvec-
tors for these modes can be defined locally. Each eigen-
vector is associated with one elementary hexagon of the
lattice, having amplitude +' 1/&6 at alternate sites
around this hexagon and amplitude zero at other sites. It
represents rotations of the spins in each triangle [rigid to
O(e)] about axes defined by the spins at the vertices ly-

ing ofT the hexagon. The defect lines discussed above are
not, in general, in one-to-one correspondence with these
zero modes: While each defect line, in the small ampli-
tude limit, is equivalent to a linear cornbinatior] Of zero
modes, there are, in a typical planar state„ fewer defe('t
lines than zero modes.

Anharmonic forces play a central role. At low temper-
atures, it is necessary only to retain the leading terms
in H. Anticipating the result, e'-O(T'~-) and e'
-O(T'~ ), we require from Hi only terms of order
e'(e')- [terms O((e')') being absent] and, from H4,
terms of order (e') . To this accuracy,

Hi=(J/2) gx; Z((c; EI Ej El )
&i,j )
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der will be evident in the correlation function, g(r, p)
=[ ~ ((n, . np) ) ——,

' ], which takes the value 1 in planar

ground states. Expanding around a planar state, Bn
= —

3 (ei'ii+eji2+e3zq)+O(e ). We expect, there-
fore, a characteristic temperature dependence, 1 g(—r)
tx: (e e)I) —T'/ as T 0, which serves to emphasize that
nematic short-range order will appear only at rather low

temperatures [(T/J) '/ «1]. It is probable that the
nematic correlation length diverges only in the limit
T 0: While a two-dimensional nematic supports topo-
logical defects, renormalization group analysis [16] sug-
gests that, in models with non-Abelian continuous sym-

metry, interactions between small-amplitude fluctuations
are sufficient to generate a finite correlation length, pre-
ernpting a defect-unbinding transition.

To test these ideas, we have performed Monte Carlo
simulations of the model defined by Eq. (I). The most
interesting behavior is at low temperatures (T/J
& 10 ), where results are in striking accord with

theory. The specific heat, Fig. 1, varies smoothly with

temperature. There is no indication of a phase transition
at finite temperature. Its low-temperature limit agrees
rather precisely with the theoretical value Cp' [ i2
—(5/4N)]ka in a system of JV spins. We estitnate (via
the entropy loss on cooling from T=~) that, for S = &,
quantum aspects would dominate below T/J =0.2.
Short-range nematic correlations, Fig. 2, are large at low

temperatures, have the predicted temperature depen-
dence, and extrapolate to complete order as T 0.
Nematic correlations fall with distance, Fig. 3, initially as
a power. Antiferromagnetic correlations are also present.
We find from a detailed analysis (not shown) that they

have the structure of the J3xJ3, three-sublattice Neel
state [Ref. [8], Fig. 1(a)]. In Fig. 3 (inset) we compare
the nematic correlation function g(r) with the spin corre-
lation function, g, (r) =(S(0) S(r)), for spins belonging
to the same sublattice of the J3x J3 state. In contrast to
the nematic correlations, antiferromagnetic correlations
do not saturate even at very low temperatures. While it
is clear that the predominant order is nematic, it remains
an open and delicate question whether the system sup-
ports long-range antiferromagnetic order as T 0. If
such order exists in the model studied, it is likely to be
sensitive to quantum fluctuations, impurities, or glassy
freezing.

The influence of finite system size on these results is in-
dicated in Figs. 1 and 3: Its effects on C& are very small,
and on g(r) are significant only for r approaching the lat-
tice half-width. The influence of finite simulation time
(10 —10 Monte Carlo steps per spin at each tempera-
ture) requires more discussion. We have been able to
reproduce the correlation function data in Fig. 3 (inset)
starting from both a high-temperature configuration and
the 43x J3 antiferromagnetic state. There are, however,
degrees of freedom that do not relax in the course of the
simulations. Specifically, we have been unable to equili-
brate the q =0, three-sublattice, planar antiferromagnetic
ground state (which has three spins per magnetic unit
cell). This is illustrated in Fig. 2 by the small differences
in behavior between samples heated from this state and
those cooled from high temperature. We believe the im-
portant distinction in this context between the J3x J3
and q =0 antiferromagnetic states is that escape from the
former is possible via the introduction of short line de-
fects, while escape from the latter involves line defects
which span the system.
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FIG. 2. Temperature dependence of nematic correlation
function g(r, s) for a, P nearest-neighbor (N) and next-
nearest-neighbor (NN) triangles. I08 site system. The data
were obtained by heating the q =0, antiferromagnetic ground
state (solid lines), and by cooling a high-temperature
configuration (dashed lines).
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FIG. 3. Distance dependence of nematic correlation func-
tion. T/J=5x IO ', 432 and 768 sites: A, L. T/J=3x IO
768 sites: a Inset: Nematic (0) and spin (0) correlation func-
tions g(r) and g, (r) at T/J=2. 5& I0, 432 sites.
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Finally, we consider dynamical correlations within har-
monic spin-wave theory. VVe choose local spin quantiza-
tion axes as in Eq. (2) and obtain the same spectrum for
all planar states, with energies ral(q) =JS[2X(3—

A, )] '

where A.
=—Ai(q), defined above. The branch I =0 has zero

energy for all q: If anharmonic interactions simply gen-
erate a stiffness, it is expected [17] to remain a Goldstone
mode. At low energy, the two other branches, I =+, —,
have linear dispersion and are, respectively, polarized
mainly within (I =+) and out of (I = —) the ground-
state spin plane. The two polarizations make qualitative-
ly different contributions to g"(Q, Q), the imaginary part
of the dynamic susceptibility. In-plane polarization is

sensitive to disorder in the static correlation function
(S; Sj) and gives a term broad in Q. Out-of-plane polar-
ization generates a term proportional to 6'(Q —q), with a
form factor which vanishes as Q 0 but which is large
near other Bragg points.

The possibility of excitations sharp in Q and 0 around
disordered ground states is striking. At present, it is un-

clear whether this feature survives anharmonic interac-
tions with the zero modes. Results of inelastic neutron
scattering on single crystals of SrCr&Ga40~& would be
especially interesting in that context.

%'e should like to thank S. T. Bramwell, B. D. Rain-
ford, and 3. toit for very helpful discussions, and P. Cole-
man and G. Aeppli for preprints.

Wote added. —Since submitting this work, we have re-
ceived three related preprints [18].
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